
Dynamic networks

NetGen : objectives, installation, use, and
programming

Bernard Pottier
Pierre-Yves Lucas, . . .

Université de Bretagne Occidentale

October 18, 2013

2

Chapter 1

Installation and first experiments

1.1 Smalltalk, the underlying development system
NetGen has been developed using Smalltalk, a powerful object-oriented language. Smalltalk
is available on different platforms such as: VisualWorks, from Cincom, VisualAge, from
IBM, Pharo, coming from free software community.

Historically, the language has been created at Xerox PARC, and divulged with precise
specifications of its syntax, intermediate code and tools. This has allowed universities and
growing IT companies to implement virtual machines, or even hardware to execute the
virtual image published by the PARC.

Visualworks is a branch coming from the initial version with a lot of improvements and
the capability to follow software and system progresses due to fast integration tools.

Pharo, the ’free Smalltalk’ is completely a new design.
Most of the Smalltalk environments are interpreted, and thus, executed by a Virtual

Machine (VM). The VM is processor and system dependent. The object environment is
located in large files called Virtual Images, because they reflect the abstraction of the object
organization. Images are deployed inside the computer memory at run-time, and they are
dumped into files to be restored when useful. At the difference of a VM, the virtual image
is more or less platform independent.

Practically, to run a Smalltalk environment, a user need to apply the VM to an image.
An application written in Smalltalk is simply a dedicated image prepared by developers

that is executed by a VM. This dedicated image does not have development tools and
appears exactly as a normal application to an end user.

NetGen, the software presented in this report, can be seen as an application. Due to the
commercial nature of Visualworks, the only choice was to distribute as package, and let
interested users to load them on a standard image.

1.1.1 What is needed
To work with NetGen it is necessary to prepare a specific environment:

1. VisualWorks VM : as distributed by Cincom

2. Visualworks image : also from Cincom. These two items are installed from personal
use, non-commercial distributions, available on http://cincomsmalltalk.com.

3. NetGen packages : downloaded from a server at University of Brest. A running
VisualWorks system is necessary to access the data base on http://wsn.univ-brest.fr.

As a benefit from VM technique, it is possible to run the software on common plat-
forms: Linux, MacOSX, Windows. However, external software/compilers are used as a
target. Integration of these tools in the design flow necessitates:

3

4 CHAPTER 1. INSTALLATION AND FIRST EXPERIMENTS

1. kroc : the Occam compiler from university of Kent. Kroc provides a concurrent
process oriented environment that can execute network simulation on multi-core pro-
cessors. Basically, networks are transformed on communicating process syntax, one
thread per node.

2. CUDA : the Nvidia environment for Graphic Processing Units (GPUs) on which net-
works are mapped, one thread per node, communications executed in shared mem-
ory.

3. Graphviz : a well known network graphical presentation package that allows to
draw networks for documentation, as example.

1.2 VisualWorks installation
The Cincom site proposes an evaluation ISO file for download, with a non commercial
license. Read the statements and download the CDrom (if you agree).

After this, it comes a 600Mo .iso file that can be used on your platform (we prefer
Linux). This file must be mounted as a fake CDrom, generally by simply clicking the
file icon. Installation is done by following the default choices of the CDrom. It can be a
good idea to setup the files in a system place rather than ones home directory (as example,
/Developer, on MacOSX.

On Linux, it is possible to proceed in from a terminal command line by saying:

sudo mount -o loop,exec CSTxx.iso /mnt

CSTxx.iso is replaced by the name of the downloaded file on the system, and /mnt is
the local directory where the CDrom will appear (ls /mnt will show the installation files).
After this, you will type /mnt/installUnix and follow the instructions.

32 bits or 64 bits? . As the processors are evolving, it was also necessary to evolve
VMs to follow these progresses. On Linux, it is necessary to be aware of the system
characteristics (type uname -a). kroc is still 32 bits, thus the best choice would be to
remain with a 32 bits virtual machine, and virtual image.

1.3 Creating an initial environment
The last versions of VisualWorks propose project folder as a convenient way to manage
different development, thus different image. On MacOSX, a folder appears on the desktop
that provides direct access to different environments.

On Linux, our practice is to proceed in the following way:

1. install csh: apt-get install csh, csh is used to interface Linux or MacOS at the
command level,

2. create a project directory: mkdir project1 ; cd project1

3. locate VisualWorks: directory where you put VW during its installation. As exam-
ples, /usr/local/vw7.9.1pu for a system installation, or /home/myname/vw7.9.1pu
for an installation at myname home directory.

4. create a script command to start a new image. Call it startInit to recall that it
start an initial environment. The script is for bash, to setup an environment variable,
then to launch the virtual machine executable visual, on the initial virtual image
visualnc.im.

1.4. CREATING A NEW PROJECT 5

Listing 1.1: bash version
#!/bin/bash
export VISUALWORKS=/usr/local/vw7.8.1nc
echo $VISUALWORKS
${VISUALWORKS}/bin/linux86/visual ${VISUALWORKS}/image/visualnc.im

This script is for the 7.8.1 Visualworks home installed at the system level, and not
the /usr/local/vw7.9.1pu that could be the choice for a recent VisualWorks. The
VISUALWORKS variable is setup to point to this home. It is used inside Smalltalk
to access lot of resources. Don’t miss to configure it correctly!

5. make the script executable, and run it:
chmod +x startInit ; ./startInit

If everything is fine, the VM is up, showing two windows figure 1.1.

Figure 1.1: Initial environment

1.4 Creating a new project
1.4.1 New image file creation
The process of creating a new environment is reproduced for each new project. Once the
initial environment is up, we save it to the new project name.

The trick is simply to save the image at the current location, or to a newly created
directory, thus creating a new image file. Figure 1.2 shows an image creation Dialog opened
from File > save as menu. Notice the following points:

• Access to the current directory by the right button on the first line of Dialog. The
default location shown on the button is the VISUALWORKS home which is not
suitable as a working location.

6 CHAPTER 1. INSTALLATION AND FIRST EXPERIMENTS

• the image file name is changed to project1.im to reflect the name of a new project.

After this, do a Save, then using File > Exit, quit the initial image without saving.

Figure 1.2: Creating a new image file project1.im

1.4.2 New script creation
Now, we have a new file called project1.im that we ca use to host developments. Check its
presence by listing the directory ls project1.*.

It is more easy and secure to setup a new script file to launch our project. So, we copy
startInit to startProject1, (cp startInit startProject1), and we modify startProject1
as follows:

Listing 1.2: bash version
#!/bin/bash
export VISUALWORKS=/usr/local/vw7.8.1nc
echo $VISUALWORKS
${VISUALWORKS}/bin/linux86/visual ./project1.im

Then, as in section 1.3, chmod +x startProject1 ; ./startProject1, that launch
the new project safely.

1.4.3 Summary
• Creation of a directory to host developments

• Two scripts to launch the initial environment, and to launch a new project environ-
ment

We just need to recall the files location, we can launch and quit the project, making the
choice of saving modifications to a file or not.

1.5 Connecting to Store
Once the project1 environment is launched, it becomes possible to connect to software
repository. This is done by the Store facilities in the main window. Observe the Store
menu.

1.5. CONNECTING TO STORE 7

1.5.1 Accessing a repository
Figure 1.3 shows the Dialog allowing to connect to a package repository. The menu
Store > Connect Repository will open it. The fields are filled with location and permis-
sions to access the server at UBO. It is safe to save the connection to allow an easy reuse.
Connection is normally fast, and release the Store menu quickly.

Figure 1.3: Defining a repository access

1.5.2 Loading packages
Once a connection is valid, by using Store > Published items, we can observe the database
contents, select package, an load software. Figure shows how to proceed in the case of
DistributedModeling:

1. select the name of a package on the left list

2. watch the different versions appearing in the right list

3. select one version

4. open the version menu and says Load

The Store tool will retrieve packages and needed dependencies from the server (if these
dependencies are correctly defined). This take time. At the end of the process, the NetGen
window appears (figure 1.5). Th Hotdraw window can be closed safely, this package is of
marginal interest in the project.

1.5.3 Checking NetGen
By selecting 2D Random, and Graphic layout, then by pushing the Generate button, a ran-
dom layout of 20 systems is produced, and connections are computed based on a minimum
distance of 100 points. Figure 1.6 shows a different case, where the number of systems has
been increased to 40. The graphic window displays the resulting layout, with 5 networks
and 3 isolated nodes: the bottom left view inside the control window states that 37 nodes
are connected.

The edges in the graph represents possible connections between nodes, given a range
of 100. Grey zone figures uncovered points, while white zones are always under control of
a node.

The full statistic for this sample quantifies the graph structure in relation with a surface
where the network is produced.

8 CHAPTER 1. INSTALLATION AND FIRST EXPERIMENTS

Figure 1.4: Choosing and loading packages

Figure 1.5: NetGen initial window

1.6. SUMMARY 9

Figure 1.6: NetGen : random network generation with 40 nodes

genRange100Points40
processus : 37
min fanout : 1
max fanout : 5
channels : 114
coverageArea : 368718
percentArea : 90

1.6 Summary

1.6.1 Knowledge status
At this point, it is probably useful to save an image from the VisualWorks launcher window
: File > Save. Knowledge status is :

1. Development tools installation for VisualWorks,

2. Connection to a package repository data base

3. Loading NetGen development tools

4. Checking NetGen functionality

1.6.2 More background, some useful tricks about Smalltalk
• The selection of Tools >Workspace inside the main window launcher, launches an

additional window similar to a terminal. Inside this window, users can type and
execute Smalltalk statements.

10 CHAPTER 1. INSTALLATION AND FIRST EXPERIMENTS

Execution is obtained by selecting a piece of code, calling a pop-up menu (right
click), selecting doit, or printit (or inspect) inside this menu. Pay attention to the
fact that the menu must be observed carefully to do a selection. By releasing the
printit option, the code is compiled, evaluated, and the resulting value in variable x
is displayed in the Workspace.

Figure 1.7: Programming in work-spaces

• In a similar way, application windows can be opened, or data set can be prepared
interactively. To launch a window similar to figure 1.6 , type UINetworkGeometry
open in a Workspace, and call doit from the pop-up menu.

• More about Smalltalk programming : the System Workspace window (figure 1.2)
gives access to lot of contributions about the language and the system. The Smalltalk
syntax is very simple, thus easy to learn: get started. . .

Chapter 2

Building abstract networks

Our networks are abstractions appearing basically as graphs, grouping nodes representing
actual systems, edges representing communication links. Abstraction allows to cover lot of
situations, from the nano scale to the universe, and lot of domains, such as distributed sens-
ing, distributed computing, communication systems, environment modeling, bio systems.

Here, the focus is on wireless sensor networks design and validation in regards of prac-
tical situations in the environment. NetGen software upper services have the following
objectives:

1. Practical system description based on geometry.

As example, from a map, one can decide sensor locations taking into account physi-
cal considerations, decide on a wireless technology, and infer workable communica-
tion links.

Description can be achieved based on maps, or pictures. Alternatively, generators al-
low to produce random distributions of different characteristics. A Text input format
allows to exchange network topologies with external tools. .

2. Behaviour description.

As example, nodes will execute programs, (1) to control and sense locally physical
phenomena, (2) to contribute to the distributed system activities, such as collecting,
transforming data, sending alerts.

Behaviour description follows currently the synchronous model that use discrete time
boundaries to make system evolutions. This technique is relevant for most of the
sensor network technologies, as example 802.15.4, or commercial Digimesh. This is
because sensor systems need to go to sleep and wake up periodically..

3. Validating a system behaviour.

As example, the communication load implied by a particular topology, the latency
and cost for producing diagnostics, energy cost of a particular algorithm, risks of
failures, redundancy management.

4. Code generation.

Systems can be huge, and the order of several thousand of nodes is reached by prac-
tical applications. They are dynamic: critical systems are exposed to failures and
mobility can be central in an application. Simulation is a key point in validation
to measure latency delays, risks, or power consumption. Code generation integrate
local behaviours inside a network topology, run the resulting simulation code, and
provide diagnostics.

11

12 CHAPTER 2. BUILDING ABSTRACT NETWORKS

This is a compute intensive task where a number of steps must be executed by a
number of nodes.

Further chapters will explain how to produce simulators for Graphic Accelerators,
and for multi-threaded execution on multi-core processors, respectively from CUDA
framework (x1000 processors), and Occam process oriented programs (x10 proces-
sors).

5. Preparing deployment.

Once a system is validated, it is necessary to prepare an equivalent behavior for the
sensors. This is also code generation, and can be achieved in a similar way as for
simulators.

The following sections will describe existing functionality, and known challenges.

2.1 Network description
Network is described as a graph grouping nodes and communication links. In terms of data
structures, a convenient representation is:

• a global Dictionary holding nodes,

• for each link, an input node, and an output node.

• for each node, a name, an array of input links, and an array of output links.

This representation allows to retrieve quickly the available nodes, or a particular node,
and from that node, direct neighbors, by traversing each link.

2.1.1 Textual description
The textual representation is a reflect of this organization. It appears in the right editor of
NetGen window:

• a title for the network,

• a list of messages carried by the links,

• one line for each node.

These lines are a sequence grouping

– the process name,
– the neighborhood accessible by the output links, specified between braces, and

separated by commas,
– the name of the program, or procedure executed by the node,
– node attributes

As an illustration, the network presented figure 1.6 has the following specification:
genRange100Points40

messages none defined.
P1 { P11 , P13, P23 , P24 } Node (31 @ 182) (100)
P2 { P30 } Node (499 @ 40) (100)
P3 { P4, P6, P7, P33 , P37 } Node (179 @ 338) (100)
P4 { P3, P7, P8, P31 , P37 } Node (224 @ 269) (100)
P5 { P20 } Node (424 @ 306) (100)
P6 { P3, P7, P22 , P33 } Node (227 @ 378) (100)

2.1. NETWORK DESCRIPTION 13

P7 { P3, P4, P6, P37 } Node (173 @ 316) (100)
P8 { P4, P22 , P31, P33 } Node (293 @ 293) (100)
P9 { P10 , P15, P21 , P39 } Node (413 @ 601) (100)
P10 { P9, P15 , P21, P39 } Node (410 @ 598) (100)
P11 { P1, P23 } Node (57 @ 112) (100)
P12 { P16 , P22, P28 } Node (385 @ 440) (100)
P13 { P1, P23 , P24, P37 } Node (89 @ 216) (100)
P14 { P32 } Node (269 @ 42) (100)
P15 { P9, P10 , P21 } Node (350 @ 638) (100)
P16 { P12 , P19, P22 , P28 } Node (324 @ 448) (100)
P17 { P30 , P32 } Node (368 @ 76) (100)
P18 { P38 } Node (153 @ 482) (100)
P19 { P16 , P28 } Node (289 @ 513) (100)
P20 { P5 } Node (403 @ 283) (100)
P21 { P9, P10 , P15, P28 , P39 } Node (386 @ 558) (100)
P22 { P6, P8, P12 , P16, P33 } Node (306 @ 386) (100)
P23 { P1, P11 , P13, P37 } Node (108 @ 171) (100)
P24 { P1, P13 , P35 } Node (18 @ 281) (100)
P25 { P29 , P34, P36 } Node (580 @ 175) (100)
P28 { P12 , P16, P19 , P21 } Node (375 @ 487) (100)
P29 { P25 , P34, P36 } Node (560 @ 152) (100)
P30 { P2, P17 } Node (420 @ 51) (100)
P31 { P4, P8 } Node (279 @ 237) (100)
P32 { P14 , P17 } Node (281 @ 35) (100)
P33 { P3, P6, P8, P22 } Node (250 @ 380) (100)
P34 { P25 , P29 } Node (537 @ 154) (100)
P35 { P24 } Node (41 @ 314) (100)
P36 { P25 , P29 } Node (639 @ 172) (100)
P37 { P3, P4, P7, P13 , P23 } Node (145 @ 255) (100)
P38 { P18 } Node (110 @ 436) (100)
P39 { P9, P10 , P21 } Node (457 @ 570) (100)

2.1.2 Logic description

For small size networks, a logic organization can be processed by an external program
called Graphviz. On Linux system, packages are available, thus on an Ubuntu system, it
should be sufficient to load it (apt-get install graphviz). The input of this program
is expressed in the dot syntax.

To produce dot files, select Dot File option which will produce a .dot file in the direc-
tory Generated/. When Dot Graph is selected, and where graphviz is available, the file is
processed to produce a postscript representation that lot of viewers can read (see Figure).

2.1.3 Programming networks, and processing

The control window allows to save descriptions as .net text files, and to reload saved files.
Processing these files can be done at any time by calling accept function in the editing
facility. This will produce Dot files, Occam programs, CUDA programs when necessary.

The .net files can also be produced externally, specified within the editor, or the network
structure can be produced by programs.

As a sample experiment a directional ring with 5 Nodes is specified as follows:

ring5

messages none defined.
Head { P1 } Node
P1 { P2 } Node
P2 { P3 } Node
P3 { P4 } Node
P4 { Head } Node

14 CHAPTER 2. BUILDING ABSTRACT NETWORKS

P29
P25

P29 .P25

P34

P29 .P34

P36

P29 .P36

P25 .P29

P25 .P34

P25 .P36

P34 .P29

P34 .P25

P36 .P29 P36 .P25

P10 P9P10 .P9

P15

P10 .P15

P21

P10 .P21

P39

P10 .P39

P9 .P10

P9 .P15

P9 .P21

P9 .P39

P15 .P10

P15 .P9
P15 .P21

P21 .P10

P21 .P9

P21 .P15

P21 .P39 P28
P21 .P28

P39 .P10

P39 .P9

P39 .P21

P17

P30P17 .P30

P32

P17 .P32

P30 .P17

P2P30 .P2

P32 .P17
P14P32 .P14

P2 .P30

P33

P3

P33 .P3

P6
P33 .P6

P8
P33 .P8

P22

P33 .P22

P3 .P33

P3.P6

P7

P3.P7

P37

P3 .P37

P4
P3.P4

P6 .P33

P6.P3

P6 .P22

P6.P7

P8 .P33

P8 .P22

P8.P4

P31 P8 .P31

P22 .P33

P22 .P6

P22 .P8

P12

P22 .P12
P16

P22 .P16

P14 .P32

P7.P3

P7.P6

P7 .P37

P7.P4 P23

P1

P23 .P1

P11

P23 .P11

P13

P23 .P13

P23 .P37
P1 .P23 P1 .P11

P1 .P13

P24

P1 .P24

P11 .P23

P11 .P1

P13 .P23

P13 .P1P13 .P37

P13 .P24

P37 .P3
P37 .P7

P37 .P23

P37 .P13

P37 .P4

P4.P3

P4.P8

P4.P7

P4 .P37

P4 .P31

P18
P38P18 .P38

P38 .P18

P20 P5P20 .P5

P5 .P20

P31 .P8

P31 .P4

P24 .P1

P24 .P13

P35P24 .P35
P35 .P24

P12 .P22

P12 .P16

P12 .P28

P16 .P22

P16 .P12

P16 .P28

P19

P16 .P19
P28 .P21

P28 .P12

P28 .P16

P28 .P19 P19 .P16
P19 .P28

Figure 2.1: Logic organization as seen in graphviz

P1

P2P1.P2 P3P2.P3
P4

P3.P4

Head
Head.P1

P4.Head

Figure 2.2: Ring5

2.2. REGULAR NETWORKS 15

2.1.4 Building networks by program
To be completed later.

The section can be skipped in a first stage. it implies some Smalltalk programming:
one to two pages with pieces of listings.

2.2 Regular networks
To be completed later.

This function is called by selecting Grid rather than 2D Random, filling the range (200)
and number of systems (40). The connectivity is computed on this basis..

Figure 2.3: Layout on a rectangular surface with 200pts range and 40 nodes (at most).

2.3 Selecting a sensor layout from a map
Whereas the sensor network will be deployed, it is necessary to define sensing points, and
expected connectivity between these points. Ranges produced by wireless technologies
can be very different, very small for body area networks to very large, country size appli-
cations. Most of the solutions use dedicated network architectures that compute and route
information, or standard solutions that support routing and sequencing of communications.
In any case, the network topology is critical for two opposite reasons:

• reducing the number of communications is necessary to save energy and time,

• having enough redundancy in the routing capability is a solution in the case of fail-
ures (nodes or communications).

The frequency, volume and data rate of communications are also points of interest,
with critical effects for some applications requiring high peek bandwidth. In other cases,
frequency can be very low with the critical problems being energy and costs.

We will use a medium size geographic map example to illustrate network design, but
anything else could apply (body description, nano fabric, etc. . .). Figure 2.4 is a PNG
satellite view coming from the Internet, that also displays at the bottom left. An assumption
is that a practical sensing application needs to deploy wireless equipment to measure some
environmental characteristic. We also suppose that this equipment has been selected to

16 CHAPTER 2. BUILDING ABSTRACT NETWORKS

work on distances suitable to implement a network. As example, some 802,15,4 devices
offer ranges from 20 to 40 km on the 900Mhz band.

Figure 2.4: Sample image supposed to be stored as a PNG file in the working directory.
The map has a scale useful to tune a range for wireless sensors.

2.3.1 Selecting sensor positions
In NetGen control window, use the Options > Pick points entry to open a new Pick Points
window (figure 2.5). Then in this window, do a File > Load image, to load the sample
image. The mouse cursor change to a cross, and each button pressed event will draw a
circle around the selected position.

Figure 2.5: Pick point view

The slider on the top of the window, or the numeric field allow to change the range with
the effect that circles around sensors increase, or decrease. when circles are large enough,
sensors are supposed to establish radio contact (distance(s1,s2)> range).

A problem is to adapt the expected wireless range to the image, and a trick to do it is to
install fake sensor points on the scale rule (shown at the bottom of figure 2.4), then to tune
the slider to obtain a communication.

2.4. SUMMARY 17

Figure 2.6: View showing sensor positions Pi), and connectivity. The scale has been
adapted to 150 points for a distance of 20 km.

The File menu has options to save and reload points position into external text files.

2.3.2 Building a net
Still in the File menu, there is also a Buildnet entry, that presents the network specification
inside the NetGen control window (see figure 2.7).

After transferring the specification, it is possible to edit it. As example it is a good idea
to change its default name. It becomes also possible to use the code generation functions.
Figure 2.8 presents a set of choice suitable for graphviz and Occam generation.

Notice that the call to these functions is done by the accept entry of a pop-up menu,
and not the Generate button that will destroy the textual specification.

2.3.3 Logic presentation
The file has been dropped inside the Generated directory (section 2.1.2) as a Postscript
file (figure 2.9). The rule fake network appears as a parasite on the left of the application
network.

The logic file uses the same names as the PickPoints view, and the textual presentation.

2.4 Summary
This chapter explains how to use maps or other images for planing sensors positions, and
how to check the topology by generating a graph view. The Generated directory also has
an architecture description file expressed in the Occam Syntax.

18 CHAPTER 2. BUILDING ABSTRACT NETWORKS

Figure 2.7: Transfer of the network to NetGen window.

Figure 2.8: Generation of a logical network

2.4. SUMMARY 19

P13

P1P13 .P1

P12P13 .P12

P14

P13 .P14

P1 .P13
P1 .P12

P1 .P14

P5

P1.P5

P2
P1.P2

P12 .P13
P12 .P1 P12 .P14

P14 .P13

P14 .P1

P14 .P12

P10

P8
P10 .P8

P9

P10 .P9

P11P10 .P11

P8 .P10

P8.P9

P7

P8.P7

P8.P5

P6

P8.P6

P9 .P10

P9.P8

P9 .P11

P9.P7

P9.P6

P11 .P10

P11 .P9

P7.P8

P7.P9

P7.P5

P7.P6

P5.P1

P5.P8

P5.P7

P5.P6P5.P2 P6.P8

P6.P9

P6.P7

P6.P5

P4
P3P4.P3

P3.P4 P2.P1

P2.P5

Figure 2.9: Equivalent logical network given a wireless range of 20 km

20 CHAPTER 2. BUILDING ABSTRACT NETWORKS

Chapter 3

Synchronous distributed
behaviours using Occam

At this point, the installation of kroc, the Kent Research Occam Compiler should be con-
sidered. The first section will detail how to proceed on a Linux installation.

3.1 Installing kroc
The Occam compiler is developed at University of Kent, with its home page at http://projects.cs.kent.ac.uk/projects/kroc/trac/..
Two branches are proposed: out of the same compiler frontend:

• kroc i386 compiler which makes use of a code generator for x86, thus enabling
execution of programs on current multi-cores,

• Transterpreter Virtual Machine (TVM), which enables execution on micro-controllers.

The two branches are good targets for wireless sensor designs. The first is used to
support concurrent simulation of networks, the second will support execution at sensor
level in a portable way.

In this chapter, the i386 execution of simulations is the main concern, and our guide is
the web page provided by Kent (it would be sufficient to follow these steps). This section
is just a check out of instructions provided at this location.

1. access installation page from /sl Information for users

2. check your system

uname -a
Linux MyLinuxBox 3.2.0-51-generic #77-Ubuntu SMP Wed Jul 24 20:18:19 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

I have a 64bits installation supporting concurrent execution.
lsb_release -a
LSB Version: core -2.0-amd64:core -2.0-noarch:core -3.0-amd64:core -3.0-noarch:core -3.1-amd64:core -3.1-noarch:core -3.2-amd64:core -3.2-noarch:core -4.0-amd64:core -4.0-noarch
Distributor ID: Ubuntu
Description: Ubuntu 12.04.2 LTS
Release: 12.04
Codename: precise

This is Precise 12.04 LTS distribution of Ubuntu.

3. Fetch packages dependencies useful for kroc installation on Ubuntu as explained in
Debian/Ubuntu (Linux: If you’re using Debian or Ubuntu, see DebianInstallation.).
For 32bits and 64bits installation, it is:

21

22 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

sudo apt-get install aptitude bash gcc binutils gawk make automake autoconf pkg-config\
libc6 -dev libsdl1.2-dev libsdl -sound1.2-dev libgl1 -mesa -dev libmysqlclient15 -dev libpng12 -dev libxmu -dev \
libxi -dev libplayercore2 -dev libplayerc2 -dev libltdl3 -dev perl python xsltproc git

Additional step to support 32bits programs on 64bits systems such as MyLinuxBox:

sudo apt-get install libc6 -dev-i386 lib32gcc1 gcc-multilib

And we can get back to the main installation page.

4. Fetching kroc sources using git (fast):

git clone --depth 1 -b kroc -1.6 git://github.com/concurrency/kroc.git kroc -git

This leaves a kroc-git additional directory with the sources. Change to this directory
(cd kroc-git). There is a build command to configure the compiler sources,
and, as mentioned in kroc web page one useful parameter would be to define the
installation location.

5. Configuration and compilation of kroc for end users (we are end users), it takes time:

./build --prefix=/usr/local/kroc

On MyLinuxBox, we got errors, due to wrong installation of graphics libraries.

occbuild --in-tree /home/bernard/Documents/netgenDoc/kroc -git --toolchain=kroc --library occGL.lib --include occGL.inc
\
-lglut -lGLU -lGL -lSM -lICE -lX11 -lXext -lXmu -lXt -lXi opengl_wrap.o
/usr/bin/ld: cannot find -lglut
/usr/bin/ld: cannot find -lGLU
/usr/bin/ld: cannot find -lGL
/usr/bin/ld: cannot find -lSM
/usr/bin/ld: cannot find -lICE
...

A simple workaround is to start make with the ignore errors flag: .make -i

And the final diagnostic was :

KRoC has now been built.

Modules enabled (33/50):
cif convert course dblmath dynproc file fmtout forall hostio hostsp http ioconv

maths occGL proc random raster rastergraphics rasterio rastertext selector shared_screen
snglmath sock solib splib ss stream string time trap ttyutil useful

Modules disabled (17/50):
button cdx cspdrv graphics3d miniraster moa netbar occSDL occSDLsound occade occplayer ocuda player pony sdlraster udc video

6. Now we install the programs in /usr/local/kroc, by typing : sudo make -i install.

Checking the installation we see a kroc compiler, and two shell scripts to configure
the environment:

ls /usr/local/kroc/bin
ilibr kmakef kroc kroc -setup.csh kroc -setup.sh mkoccdeps occ21 occamdoc occbuild tranx86 trapns

7. Obtain access to the compiler and checking access (bash version):

MyLinuxBox: $ source /usr/local/kroc/bin/kroc -setup.sh
MyLinuxBox: $ which kroc
/usr/local/kroc/bin/kroc
MyLinuxBox: $ echo $LD_LIBRARY_PATH
/usr/local/kroc/lib

3.2. CHECKING OCCAM COMPILER: HELLO WORLD! 23

As this setup is to be done for each session, it is convenient to copy the script inside
the shell configuration file (edit /.bashrc, as example).
And finally, we can launch the kroc compiler
MyLinuxBox: $ kroc
KRoC version 1.6.0 targeting x86_64 -unknown -linux -gnu (driver V2.0)
Usage: kroc [options] [occam sources/pre-compiled sources]
Options:

-b, --brief Give brief occ21 error messages
-c, --compile Compile source to objects , do not link
-s, --strict Strict checking mode
-S, --stoperror Compile in STOP error mode
-d Enable post -mortem debugging
-di Enable insert debugging
-e Enable user -defined channels
-h, --help Print this message and exit

....

3.2 Checking Occam compiler: Hello world!
Samples to learn Occam programming are available under the examples directory for each
module. Basic Occam examples are accessible in ./modules/course/examples and ./mod-
ules/course/exercises under the kroc-git directory.

MyLinuxBox: $ cat hello_seq_world.occ
PROC hello.world (CHAN BYTE keyboard?, screen!, error!)

--{{{
VAL []BYTE greeting IS "Hello World*c*n":
SEQ i = 0 FOR SIZE greeting

screen ! greeting[i]
--}}}

:

• Build your own Occam directory : mkdir /OccamDev

• Copy example files there : cp hello seq world.occ /OccamDev

• Change to this directory : cd /OccamDev

• Compile by hand : kroc hello seq world.occ

• Execute : ./hello seq world
Hello World

Below is a commented version of the program. In Occam the program structure is
defined by indentation of 2 spaces. This is visible for the body of the procedure, starting at
VAL line, and for the loop, just below the SEQ statement.

-- start a comment
PROC hello.world (CHAN BYTE keyboard?, screen!, error!)
-- define a procedure named hello.world
-- with 3 communication links (channels carrying bytes)
-- associated to Linux i/o standard descriptors

--{{{
-- this was an empty comment

VAL []BYTE greeting IS "Hello World*c*n":
-- define a constant array of bytes with a string value , including CR

SEQ i = 0 FOR SIZE greeting
-- sequential loop starting at i=0 with length of greeting occurrences

screen ! greeting[i]
-- output a char to the screen channel

--}}}
:
-- end of procedure mark.

24 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

3.3 Parallel construct and channels in Occam
Coming back to the topic of network simulation, this section will construct a concurrent
program suitable for the directional ring displayed figure 2.2. Each node in the ring could
represent a sensor. Sensors common behaviour is to execute an infinite loop for:

1. sensing, loading some status variables with values observed locally,

2. communications

(a) sending information to direct neighbors,
(b) receiving information from neighbors,

3. sleeping for an agreed fixed period

3.3.1 Sample ring5 behaviour
Let us start our example as a very simple program. Each sensor activity is represented by
a process, and each process executes the same program, defined as a procedure Node.v1.
Communication links are represented by Occam channels carrying integers. To distinguish
sensor from each other, it is necessary to provide a unique identifier Identity.

Then, as sensing is supposed to produce some result in a local variable Local.Value,
we will simply increment this variable.

To communicate, we pass the variable to one of our next neighbor, and receive the value
from our previous neighbor.

This behaviour is programmed in a ring5.v1.occ file as follows:
PROC Node.v1 (CHAN OF INT Incoming.Chan ,Outgoing.Chan , VAL INT Identity)

INT Local.Value , Incoming.Value :
SEQ

Local.Value := Identity
WHILE TRUE

SEQ
Local.Value := Local.Value +1 -- 1 sensing
PAR -- 2 communication

Outgoing.Chan ! Local.Value
Incoming.Chan ? Incoming.Value

SKIP -- 3 sleeping
:

Notice that step 2 is programmed with a PAR construct over sending and receiving.
We don’t want to define an order for activities that are concurrent. Furthermore, program-
ming sequential communications would lead to a dead-lock in the simulated ring, Occam
channels being blocking channels: communication is resolved as the 2 processes reach a
synchronization point. The concurrent construct finishes with the last branch, as a barrier
condition.

To check the grammatical correctness of this program, we can add an empty main
activity, just after the Node.v1 procedure definition:

PROC Sys(CHAN OF BYTE in,out,err)
SEQ

SKIP
:

Then, we compile our file ring5.v1.occ, and we execute the result:
MyLinuxBox: $ kroc ring5.v1.occ
Warning -occ21 -ring5.v1.occ(17)- parameter err is not used
Warning -occ21 -ring5.v1.occ(17)- parameter out is not used
Warning -occ21 -ring5.v1.occ(17)- parameter in is not used
MyLinuxBox: $./ring5.v1
MyLinuxBox: $

This programs does nothing since the SKIP statement denotes an empty process.

3.4. OBSERVING EXECUTION, SIMULATION TRACES 25

3.3.2 Sample ring5 architecture
To obtain a more convincing ring, we need to define a ring architecture having 5 nodes,
and 5 communication links. This is done by replacing the the Sys definition by a more
complete one inside a new file ring5.v2.occ.

PROC Sys(CHAN OF BYTE in,out,err)
-- channels definition
CHAN OF INT P1.P2, P2.P3, P3.P4, P4.P5, P5.P1:
-- concurrent ring construct
PAR

Node.v1 (P5.P1,P1.P2 ,1) -- P1
Node.v1 (P1.P2,P2.P3 ,2) -- P2
Node.v1 (P2.P3,P3.P4 ,3) -- P3
Node.v1 (P3.P4,P4.P5 ,4) -- P4
Node.v1 (P4.P5,P5.P1 ,5) -- P5

:

Now we compile and execute. This will produce a program with an infinite loop to be
killed. Notice that each channel is used 2 times, in input and output parameter positions.
Kroc check correctness of the architecture with two user process for reading and writing.

MyLinuxBox: $ kroc ring5.v2.occ
Warning -occ21 -ring5.v2.occ(19)- parameter err is not used
Warning -occ21 -ring5.v2.occ(19)- parameter out is not used
Warning -occ21 -ring5.v2.occ(19)- parameter in is not used
MyLinuxBox: $./ring5.v2

3.3.3 Ring 5 has a synchronous behaviour
Each process has its own control loop, but the PAR communication implementation guar-
antees that none of them can take much progress against the neighbors. Every process is in
the same turn as the other ones.

The simulation is executed under Occam micro-kernel controller called CCSP, that can
be multi threaded and distributed on several processor cores. The behaviour is semantically
equivalent to what happens in a wireless network whatever is the protocol used in the MAC
layer (time division TDMA, CSMA, acknowledged or not).

This simulation also obeys to synchronous distributed algorithms methodology, that
bring lots of opportunities for defining how the sensor network will implement services
and overcome difficulties.

3.4 Observing execution, simulation traces
The program in section 3.3.2 does not produce any usable output. To allow observation of
its behaviour, we need some external print out on what is happening.

Unfortunately, printing in text on a terminal requires sharing the terminal, thus synchro-
nization of processes willing to print. This can be overcome with graphics presentation, but
let us see what we can do about sharing i/os.

We have seen section that Occam program have channels mapped on file descriptors.
In the case of Ring5, the stdout descriptor must be written by our 5 processes. This is
achieved by a multiplexer, and there is the ALT construct of Occam that allows to take into
account 5 channels selecting one of them which appears to be ready.

ALT has an entry for channel to be inspected. A ready channel value is read in a
variable, an after this, an action is taken. As an example let us send two channels c.in.1
c.in.2 into one channel c.out :

CHAN OF BYTE c.in.1, c.in.2, c.out:
BYTE char:
SEQ i=0 FOR MaxTurns

26 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

ALT
c.in.1 ? char

c.out! char
c.in.2 ? char

c.out! char

Figure 3.1: Multiplexer on 2 channels

Normally, the construct is non determinist, meaning that one channel is selected at
random. Also, only one of the ready channels is taken for each resolved ALT, and the
construct block until one of its entry is ready.

3.4.1 Programming a trace multiplexer
The procedure Mux below shows a construct for a fixed number of nodes (MaxNodes)
looping synchronously MaxTurns times.

#USE "course.lib"
-- enables to use formatted printing procedures , out.number(..)
VAL INT MaxNodes IS 5:
-- we have 5 nodes

VAL INT MaxTurns IS 10:
-- we will do 10 rounds

-- Mux is our observer in the system
PROC Mux([]CHAN OF BYTE muxTab , CHAN OF BYTE out)
-- muxTab is an array of input channels
-- its size is managed by the Occam compiler
-- out is the output channel

BYTE char:
-- input char

SEQ i=0 FOR (MaxNodes * MaxTurns)
ALT i=0 FOR SIZE muxTab

-- fetch the real size of the array
muxTab[i] ? char

-- block until one of the input is ready
-- i is the index of the selected ready channel

SEQ
out.number(i,4,out)
-- print the index of the channel
out ! ’*t’

-- print a tab
out ! char
-- print the char
WHILE char <> ’*n’
-- loop to the end of the line

SEQ
muxTab[i] ? char
out ! char
-- read char on the channel and print it

:

This code is suitable to trace MaxNodes nodes, each of them writing on an entry of a
table, a full line closed by an end of line.

3.4. OBSERVING EXECUTION, SIMULATION TRACES 27

3.4.2 Ring behavior with a trace
As we want to watch what is happening in each process, we need to add a channel to
the Mux into each process, and to use this channel inside the internal loop. As we have
restricted the Mux to MaxTurns rounds, we also need to exchange the infinite loop to a
restricted sequence. This is the modified Node.v2 procedure:

PROC Node.v2 (CHAN OF INT Incoming.Chan ,Outgoing.Chan , VAL INT Identity , CHAN OF BYTE To.Mux)
INT Local.Value , Incoming.Value :
SEQ

Local.Value := Identity
WHILE TRUE

SEQ
Local.Value := Local.Value +1 -- 1 sensing
PAR -- 2 communication

Outgoing.Chan ! Local.Value
Incoming.Chan ? Incoming.Value

SKIP -- 3 sleeping
out.number(Local.Value ,0,To.Mux)
To.Mux ! ’*n’
-- trace the value of the local variable and send CR

:

3.4.3 Ring architecture with trace multiplexer
Now we implement the full program with:

1. Mux procedure as shown section 3.4.1, then

2. Node procedure from section 3.4.2

And we need to complete the process system from section 3.3.2 by declaring chan-
nels from processes to the trace collector, and add these channels in the parallel construct
branches. It is also needed to call the Mux with its array of input channels and the system
stdout access (see figure 3.2):

PROC Sys(CHAN OF BYTE in,out,err)
-- channels definition
CHAN OF INT P1.P2, P2.P3, P3.P4, P4.P5, P5.P1:
[MaxNodes] CHAN OF BYTE To.Mux.Tab:
-- concurrent ring construct
PAR

Mux(To.Mux.Tab,out)
Node.v2 (P5.P1,P1.P2,1,To.Mux.Tab[1-1]) -- P1
Node.v2 (P1.P2,P2.P3,2,To.Mux.Tab[2-1]) -- P2
Node.v2 (P2.P3,P3.P4,3,To.Mux.Tab[3-1]) -- P3
Node.v2 (P3.P4,P4.P5,4,To.Mux.Tab[4-1]) -- P4
Node.v2 (P4.P5,P5.P1,5,To.Mux.Tab[5-1]) -- P5

:

The source can be compiled asking a link with the course library, then executed filtering
the 10 first lines.

MyLinuxBox $ kroc -lcourse ring5.v3.occ
Warning -occ21 -ring5.v3.occ(53)- parameter err is not used
Warning -occ21 -ring5.v3.occ(53)- parameter in is not used
MyLinuxBox $./ring5.v3 | head -10

4 6
0 2
1 3
2 4
0 3
1 4
3 5
4 7
2 5
0 4

28 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

Figure 3.2: Complete Ring5 architecture with trace multiplexer

If we want to see the sequence of numbers output by node 1, we can use grep to filter
this node as well:

MyLinuxBox $./ring5.v3 | grep ’ˆ *1’
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11
1 12

3.5 Architectures and Behaviors in NetGen framework
In section 2.1.3 we have shown how to produce graphs, and Occam description too. It
is time to come back to the initial ring example and to watch what comes out from the
generator. The files produced describes architectures in a generic way. Whatever is the
network, we should be able to run our distributed behavior on it. The Generated/ directory
contains the ring architecture in the ring5.occ file. Let us comment its contents in a
simplified way.

3.5.1 Occam architecture description from NetGen
There are 2 major differences with code detailed in section :

• the program has been split in 2 files, one for architecture ring5.occ, and one for
behavior nodes-test-include.occ. The first one (generated) includes the second
one (written by hand).

• instead of listing all the channels in procedure parameters, we group them into tables,
and pass these tables as parameters. PROC Ring5 thus define input and output group
of channels, and pass them when starting the process:

Head.out IS [Head.P1]:
Head.in IS [P4.Head]:
-- and later
Node(Head.in, Head.out ,0, toMux [0])

3.5. ARCHITECTURES AND BEHAVIORS IN NETGEN FRAMEWORK 29

A big advantage in doing this is that we can have different connectivity for different
processes, and the connectivity can become very large.

This will be demonstrated later on large network examples.

#USE "course.lib" -- support for printing
VAL INT MaxFanOut IS 1: --max number of channels per node
VAL INT MaxNodes IS 5: -- max number of nodes

#INCLUDE "nodes -test -include.occ"
-- includes the file where the behaviour is located
-- this file must contains definitions for procedures Node and Mux
-- plus the diam.proto type for communication links

PROC ring5(CHAN OF BYTE stdin , stdout , stderr)
-- Channel declarations

CHAN OF diam.proto Head.P1:
CHAN OF diam.proto P1.P2:
CHAN OF diam.proto P2.P3:
CHAN OF diam.proto P3.P4:
CHAN OF diam.proto P4.Head:

-- Channel table declaration for nodes
Head.out IS [Head.P1]:
Head.in IS [P4.Head]:
P1.out IS [P1.P2]:
P1.in IS [Head.P1]:
P2.out IS [P2.P3]:
P2.in IS [P1.P2]:
P3.out IS [P3.P4]:
P3.in IS [P2.P3]:
P4.out IS [P4.Head]:
P4.in IS [P3.P4]:

-- Program Body
[MaxNodes]CHAN OF BYTE toMux:
PAR

Node(Head.in, Head.out ,0, toMux [0])
Node(P1.in, P1.out ,1, toMux [1])
Node(P2.in, P2.out ,2, toMux [2])
Node(P3.in, P3.out ,3, toMux [3])
Node(P4.in, P4.out ,4, toMux [4])
Mux(toMux ,stdout)
-- End of program body

:

3.5.2 Behaviour description, first approach
We know copy our previous behavior in a nodes-test-include.occ, and noticing that
we receive array of channels, we modify the Node procedure, using the first entry of these
arrays.

It is also necessary to declare a diam.proto type as being an INT, and to edit the Node
procedure with cast and correct declaration of variables.

This is a first version of the behavior file:
DATA TYPE diam.proto IS INT:
VAL INT MaxTurns IS 10:

PROC Mux([]CHAN OF BYTE muxTab , CHAN OF BYTE out)
BYTE char:
SEQ i=0 FOR (MaxNodes * MaxTurns)

ALT i=0 FOR SIZE muxTab
muxTab[i] ? char

SEQ
out.number(i,4,out)

30 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

out ! ’*t’
out ! char
WHILE char <> ’*n’

SEQ
muxTab[i] ? char
out ! char

:

PROC Node([]CHAN OF diam.proto Incoming.Chan ,Outgoing.Chan , VAL INT Identity , CHAN OF BYTE To.Mux)
INT Local.Value:
diam.proto Incoming.Value:
SEQ

Local.Value := Identity
SEQ i=0 FOR MaxTurns

SEQ
Local.Value := Local.Value +1 -- 1 sensing
PAR -- 2 communication

Outgoing.Chan[0] ! (diam.proto Local.Value)
Incoming.Chan[0] ? Incoming.Value

SKIP -- 3 sleeping
out.number(Local.Value ,0,To.Mux)
To.Mux ! ’*n’
-- trace the value of the local variable

:

The file to compile is the architecture, the execution produces the same result as in
section 3.5.1.

MyLinuxBox $ ls
nodes -test -include.occ ring5.occ
MyLinuxBox $ grep INC ring5.occ
#INCLUDE "nodes -test -include.occ"
bernard@PedelBP:˜/Documents/netgenDoc/Ring5$ kroc -lcourse ring5.occ
Warning -occ21 -ring5.occ(34)- parameter stderr is not used
Warning -occ21 -ring5.occ(34)- parameter stdin is not used
MyLinuxBox $./ring5 | head -8

4 5
0 1
1 2
2 3
0 2
1 3
3 4
4 6

3.6 Summary : flow for generated bidirectional ring
Let us review specification and architecture code generation on the case of a bidirectional
4 nodes ring. We will need to modify the behavioral part of the program, and will be ready
for final statements on using code generation for any network.

3.6.1 Specification and drawing
This network will be called BiDirRing4. It is processed in the same way as section 2.1.3,
asking for Occam generation and graphviz generation.

BiDirRing4
messages none defined.
P1 { P2, P4 } Node
P2 { P3, P1 } Node
P3 { P4, P2 } Node
P4 { P1, P3 } Node

3.6. SUMMARY : FLOW FOR GENERATED BIDIRECTIONAL RING 31

Figure 3.3: Logic organization for 4 nodes Bi-directional ring

3.6.2 Occam resulting architecture
The Generated directory contains the architecture description BiDirRing4.occ from which
is extracted the code below (shortened). One can notice that channel arrays now contain 2
links rather than one (P1.out IS [P1.P2,P1.P4]:).

-- processus : 4
-- min fanout : 2
-- max fanout : 2
-- channels : 8

#USE "course.lib"

VAL INT MaxFanOut IS 2:
VAL INT MaxNodes IS 4:

#INCLUDE "nodes -test -include.occ"

PROC BiDirRing4(CHAN OF BYTE stdin , stdout , stderr)
-- Channel declarations

CHAN OF diam.proto P1.P2,P1.P4:
CHAN OF diam.proto P2.P3,P2.P1:
CHAN OF diam.proto P3.P4,P3.P2:
CHAN OF diam.proto P4.P1,P4.P3:

-- Channel table declaration for nodes
P1.out IS [P1.P2,P1.P4]:
P1.in IS [P2.P1,P4.P1]:
P2.out IS [P2.P3,P2.P1]:
P2.in IS [P1.P2,P3.P2]:
P3.out IS [P3.P4,P3.P2]:
P3.in IS [P2.P3,P4.P3]:
P4.out IS [P4.P1,P4.P3]:
P4.in IS [P1.P4,P3.P4]:

-- Program Body
[MaxNodes]CHAN OF BYTE toMux:
PAR

Node(P1.in, P1.out ,0, toMux [0])
Node(P2.in, P2.out ,1, toMux [1])
Node(P3.in, P3.out ,2, toMux [2])
Node(P4.in, P4.out ,3, toMux [3])
Mux(toMux ,stdout)
-- End of program body

:

3.6.3 General formulation for behavior
The need is to show how to read and write several channels rather than one. To allow this,
it is needed to provide as many buffers as there are input and output links. The maximum
connectivity in the network is known in a constant MaxFanOut. Thus, we can dimension
and control these buffers.

32 CHAPTER 3. SYNCHRONOUS DISTRIBUTED BEHAVIOURS USING OCCAM

As we are sending from buffers, it is also necessary to copy state values, or produce
messages in the buffers, and similarly, we will need to collect and examine incoming mes-
sages to update node status.

Data type diam.proto, and procedure Mux does not change. An updated Node proce-
dure appears as follows in a new version of nodes-test-include.occ:

PROC Node([]CHAN OF diam.proto Incoming.Chan ,Outgoing.Chan , VAL INT Identity , CHAN OF BYTE To.Mux)
[MaxFanOut] INT Local.Values: -- buffers for outgoing messages
[MaxFanOut] diam.proto Incoming.Value: -- buffers for incoming
INT Local.Value:
SEQ

Local.Value := Identity
SEQ i=0 FOR MaxTurns

SEQ
Local.Value := Local.Value +1 -- 1 sensing
SEQ i=0 FOR MaxFanOut -- copy our state to outgoing buffers

Local.Values[i]:= Local.Value
PAR -- 2 communication

PAR index = 0 FOR MaxFanOut -- send in parallel
Outgoing.Chan[index] ! (diam.proto Local.Values[index])

PAR index = 0 FOR MaxFanOut -- receive in parallel
Incoming.Chan[index] ? Incoming.Value[index]

out.number(Local.Value ,0,To.Mux) -- trace some state
To.Mux ! ’*n’

:

Compile and execute in a specific directory BiDirRing4:
MyLinuxBox $ ls
BiDirRing4 BiDirRing4.occ nodes -test -include.occ
MyLinuxBox $ kroc -lcourse BiDirRing4.occ
Warning -occ21 -BiDirRing4.occ(32)- parameter stderr is not used
Warning -occ21 -BiDirRing4.occ(32)- parameter stdin is not used
MyLinuxBox $./BiDirRing4 | head -6

3 4
0 1
1 2
2 3
0 2
1 3

3.6.4 Exercise
Verify that you can produce a trace for an 8 nodes bidirectional ring for the same behaviour..

3.6.5 Exercise
BiDirRing4 is not a good demonstration of cooperation between nodes since the program
ignores values in incoming messages. A step forward would be to compute mean of a value
distributed in the neighborhood:

• modify BiDirRing4 to send a local value to the direct neigbors

• receive values from the neigbors and compute the mean of these values including the
local one.

• repeat the process for neighborhoods of 5 nodes inside the ring. Do a trace analysis.

Chapter 4

Distributed algorithms simulation

Be fore developing actual programs for wireless sensor networks, it is good to check if the
cooperation of local programs will lead to working and efficient results.

The distributed behaviour comes from:

• an architecture specification, such as mekong1.occ,

• a behaviour executed by nodes, such as nodes-test-include.occ.

The two descriptions are orthogonal, meaning that one can make evolution on the ar-
chitecture at fixed behaviour, or make evolutions on the behaviour with fixed architecture.
The situation is well known in computer architecture. It is named an Y methodological
approach, and was popularized by Gajski. The bottom branch carrying measures produced
from tools (energy, response time, cost, etc. . .).

Simulation is a key method to take measures on complex situations. To use simultation,
we need to reproduce real dispersion of behaviours, and random number generators are
useful for this.

4.1 Random numbers in Occam
The Occam course library provides the random function that has two parameters and pro-
vides a result as a couple of numbers (integers).

The small program randomSample.occ demonstrates the general use for random.
#USE "course.lib"
-- montre le fonctionnement du generateur aleatoire.
PROC Random(CHAN OF BYTE in,out,err)

VAL INT N IS 5:
VAL INT K IS 10: -- borne de tirage de random : [0,K[
PROC Genere(VAL INT seedInitial)

INT x,seed:
SEQ

x,seed:=random(K,seedInitial)
SEQ i=0 FOR N

SEQ
x,seed:=random(K,seed)
out.number(x,2,out)
out.string("*n",0,out)

out.string("___",0,out)
out.string("*n",0,out)

:

SEQ
Genere(12)
Genere(2)

33

34 CHAPTER 4. DISTRIBUTED ALGORITHMS SIMULATION

Genere(12) -- la souche est la meme que le premier cas et donne le meme tirage.
:

Compiling (kroc -lcourse randomSample.occ), and executing (./randomSample)produces
the following trace:

1
3
1
8
0

8
9
6
3
4

1
3
1
8
0

It is noticeable that the seed value allows to reproduce exactly the same random se-
quence of numbers. Thus, if we are to use this mechanism inside network simulators, we
must vary the seed at each node. The unique Identity of nodes is a good way to do this.

Chapter 5

A NetGen-compatible map
browser

This chapter will present two evolutions of the initial Netgen program for support of pre-
cise geographic positions and map browsing, then for displaying buildings or obstacles
representations extracted from OpenStreetMap databases. The present tools allow to in-
teract with the more common public information systems such as Google map and Open-
StreetMap.

The map browser is a tool allowing to display various kind of maps and to represent
locations of interest such as sensors set in the country. As this tool is developped on the
same platform as NetGen, the procedures described in chapter 1 will apply to access the
software:

• start a fresh image and ensure that the NetGen package is loaded with one of the last
version (1.28.1.2.5 should work)

• open the store dialog from VisualWorks main window

• select GoogleMap package (we need to change this name)

• select version 1.15.5.2 or later, and type load from the pop-up menu

The initial window displays as shown figure 5.1.

5.1 Moving on the map
A predefined position is visible inside the xtile and ytile fields in the left column of the
browser. Just below, a zoom factor is also provided. Whatever are these values, by pushing
the refresh map button, the browser will download geographic information to be presented
in the graphic pane.

All around this pane, four sidebars allow to move the graphics top, down, left, and right.
The four rectangles at the corner of this view control moves on diagonal directions.

By changing the zoom factor, the absolute view size will decrease or increase. As an
example going from 15 to 16 increase the level of details.

5.2 Loading networks
Networks are loaded from external files (further versions will allow direct selection from
the interface).

Currently, GPX file format is used, as it is a very common way to describe set of points
featured with attributes.

35

36 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

Figure 5.1: Initial view on the map browser: the right part displays tiles from the map from
public servers. The left column displays geographic information and allows to control
network presentation.

5.2.1 Scenario for loading informations
Suppose that by moving on the map, we have reached a particular region where a sensor
network is setup or planned.

First, let us comments what is a GPX file. In this format, we find a header that keep in-
formation about the initial source of contents. As an example, a header from the Santander
website could contain:

<?xml version ="1.0" encoding="utf -8"?>
<gpx version ="1.0" creator="NetGen for Santander">

<metadata >
<name >SmartSantander ’s sensors </name >

<desc >Sensors in city: Santander , Spain </desc >
<link >http://smartsantander.eu/</link >
<time >2013-06-13T17:45:10</time >

</metadata >

After this there is a list of entries for each of the location documented by the file. In the
case of our river, we will find tens of similar entries such as:

<wpt lat ="36.679926936710501" lon="4.911090436802451" >
<name >H1-2</name >
<sym >El Kseur </sym>

</wpt>
<wpt lat ="36.682937769536323" lon="4.919011088180600" >

<name >I2</name >
<sym >El Kseur </sym>

</wpt>
<wpt lat ="36.686345105073165" lon="4.929854203839318" >

<name >J3</name >
<sym >El Kseur </sym>

</wpt>
...

5.2. LOADING NETWORKS 37

Figure 5.2: The browser is pointing to a North Africa river where sensors are to be installed
for water observations.

This a very short information since no practical values appear from sensors. The file
extraction presents three waypoints (from the initial purpose of the NMEA standard for
GPS), with geographic coordinates as decimal expression of degrees. Following we find a
name for this particular point, and a symbol to display.

5.2.2 Loading a network
By using the Network menu at top-left we can select the Load Gpx function that brings a
dialog to select a GPX file. In our case, it is soummam.gpx file to remember the name of
the river and the file format. The file is parsed and its contents appears as points on the
graphic part.

The symbols appearing in the entries of the file are used to group waypoints together
inside networks. This networks are shown in a list in the left column. They are selectable,
and as an example, the network El Kseur is validated for display figure 5.3.

5.2.3 Network configuration
Several of the functions of NetGen as described in the previous chapter are avalaible from
this front-end window which capabilities exceed the picking tool shown chapter 2. As an
example, the range used to decide wether a sensor is connected to another can be defined
using a dedicated numeric field. Furthermore, the present tool has precise knowledge about
geographical points and related distances including display distances. Thus, the distance
can be defined as meters conforming to radio capability specification.

On figure 5.3, the range has been tuned to the point where each sensor in the El Kseur
network was reachable, giving a necessary range of 3 000 meters to include all the sensors.
The window does not react directly to range modification, it is necessary to call Draw net
button.

Some colouring functions ease the display of sensor names, range circles, and connec-
tivities.

38 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

Figure 5.3: The browser is pointing to a North Africa river where sensors are to be installed
for water observations.

The mouse location over a graphic presentation is tracked on the top-left of the window:

• point coordinates inside the window, changing to red when the mouse is precisely
over a sensor.

• this case the logical name of the node is shown in the edit field.

• a second line presents the range and position of the closest sensor, or a communica-
tion channel in the case where the mouse is over such a channel.

5.2.4 Network generation
To reach Netgen functionalities related to the process graph specification, it is sufficient to
depress the build simulations button: the specification is loaded in every Netgen window
(chapter 2 and figure 5.4) for further use: building simulation, graph drawing (see figure
5.5), etc...

After this exploration we have learned that this network has 21 nodes with maximum
connectivity of 16, with 232 communications channels.

Executing the simulation brings a value of 4 hops for the network diameter. We proba-
bly have interest to reduce the general range keeping the further nodes to a 3 000 m range.
An important aspect behind sensor nodes and map is that the simulator generated in Occam
or Cuda preserve the logic link between simulation processes and graphical representation.
Thus a simulator can animate the graphical view from outside concurrent execution.

5.3 Loading building architectures
The package concerned with building representations is MapAccess one, also available
from the same store server as for chapter 1.

In addition to this package, we need some files in the format of ”shapefile”. This time,
we propose to do our scenario on the case of Brest city which administration decided to
produce large description as 80 000 buildings set.

5.3. LOADING BUILDING ARCHITECTURES 39

Figure 5.4: Netgen window with El Kseur specification and statistic.

• start a fresh image and ensure that the NetGen package is loaded with one of the last
version (1.28.1.2.5 should work)

• open the store dialog from VisualWorks main window

• select MapAccess package (in the future, likely to be merged with the map browser)

• select version 1.6 or later, and type load from the pop-up menu

• open a system browser, look for the MapAccess package, and the comments for this
package. It is a button in the middle of the browser window. This comment looks
like the following sentences:
Display maps from tile servers, like Google Map or OpenStreetMap. Georefer-
ence points on the map. Display objects from shapefiles. Library is located here:
http://wsn.univ-brest.fr/MapAccess/library/libShapeFile.tar. Run ’make’ to compile
it. BMO shapefile is located here: http://wsn.univ-brest.fr/MapAccess/bmo/. Copy
the two files shp and shx in the same directory.

This comment is likely to change, but we will keep location allowing to download
software for the package: dynamic libraries compiled for Linux and MacOSX, and
shapefiles for Brest. We do not support Window currently.

• in your working directory, download the libraries:
wget http://wsn.univ-brest.fr/MapAccess/library/libShapeFile.tar.
Desarchive the tar file by doing tar xf libShapeFile.tar.

• and download the two shapefiles:
wget http://wsn.univ-brest.fr/MapAccess/bmo/bati-WGS84.shp
and
wget http://wsn.univ-brest.fr/MapAccess/bmo/bati-WGS84.shx.
(ftp, curl, or any web browser can do similar work)

5.3.1 Checking the configuration
To check the installation, it is best to open a system browser on class ShapefileReader
(figure 5.6). This class uses directly the public domain library for assessing file conforming

40 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

P6 P16
P6 .P16

P20

P6 .P20

P21

P6 .P21

P16 .P6 P16 .P20

P9

P16 .P9

P8

P16 .P8

P10

P16 .P10

P11

P16 .P11

P12

P16 .P12

P13

P16 .P13

P15

P16 .P15

P17

P16 .P17

P18

P16 .P18

P19

P16 .P19

P20 .P6

P20 .P16

P20 .P21

P20 .P9

P20 .P8

P20 .P10

P20 .P11

P20 .P12

P20 .P13

P14

P20 .P14

P20 .P15

P20 .P17

P20 .P18

P20 .P19

P4

P20 .P4

P5

P20 .P5

P21 .P6

P21 .P20

P21 .P9

P21 .P10

P21 .P11

P21 .P12

P21 .P13

P21 .P14

P21 .P15

P21 .P17

P21 .P18

P21 .P19

P21 .P4

P21 .P5

P9 .P16

P9 .P20

P9 .P21

P9.P8

P9 .P10

P9 .P11

P9 .P12

P9 .P13

P9 .P14

P9 .P15

P9 .P17

P9 .P18

P9 .P19

P8 .P16

P8 .P20

P8.P9

P8 .P10

P8 .P11

P8 .P12

P8 .P13

P8 .P14

P8 .P15

P8 .P17

P8 .P18

P8 .P19

P10 .P16

P10 .P20

P10 .P21

P10 .P9P10 .P8

P10 .P11

P10 .P12

P10 .P13

P10 .P14

P10 .P15

P10 .P17

P10 .P18

P10 .P19

P11 .P16

P11 .P20

P11 .P21

P11 .P9

P11 .P8

P11 .P10

P11 .P12

P11 .P13

P11 .P14

P11 .P15

P11 .P17

P11 .P18

P11 .P19

P12 .P16

P12 .P20

P12 .P21

P12 .P9

P12 .P8

P12 .P10

P12 .P11

P12 .P13

P12 .P14

P12 .P15

P12 .P17

P12 .P18

P12 .P19

P12 .P4

P13 .P16

P13 .P20

P13 .P21

P13 .P9

P13 .P8

P13 .P10

P13 .P11

P13 .P12

P13 .P14

P13 .P15

P13 .P17

P13 .P18

P13 .P19

P14 .P20

P14 .P21

P14 .P9

P14 .P8

P14 .P10

P14 .P11

P14 .P12

P14 .P13

P14 .P15

P14 .P17

P14 .P18

P14 .P19

P14 .P4

P14 .P5

P15 .P16

P15 .P20

P15 .P21

P15 .P9

P15 .P8

P15 .P10

P15 .P11

P15 .P12

P15 .P13

P15 .P14

P15 .P17

P15 .P18

P15 .P19

P15 .P4

P17 .P16

P17 .P20

P17 .P21

P17 .P9

P17 .P8

P17 .P10

P17 .P11

P17 .P12

P17 .P13

P17 .P14

P17 .P15

P17 .P18

P17 .P19

P17 .P4

P17 .P5

P18 .P16

P18 .P20

P18 .P21

P18 .P9

P18 .P8

P18 .P10

P18 .P11

P18 .P12

P18 .P13

P18 .P14

P18 .P15

P18 .P17

P18 .P19

P18 .P4

P18 .P5

P19 .P16

P19 .P20

P19 .P21

P19 .P9

P19 .P8

P19 .P10

P19 .P11

P19 .P12

P19 .P13

P19 .P14

P19 .P15

P19 .P17

P19 .P18

P19 .P4

P19 .P5

P1

P2

P1.P2

P3

P1.P3

P1.P4

P1.P5

P7

P1.P7

P2.P1

P2.P3

P2.P5

P2.P7

P3.P1

P3.P2

P3.P7

P4 .P20

P4 .P21

P4 .P12

P4 .P14

P4 .P15

P4 .P17

P4 .P18

P4 .P19

P4.P1

P4.P5

P5 .P20

P5 .P21

P5 .P14

P5 .P17

P5 .P18

P5 .P19

P5.P1

P5.P2

P5.P4

P5.P7

P7.P1

P7.P2
P7.P3

P7.P5

Figure 5.5: Logic graph for El Kseur location network.

5.3. LOADING BUILDING ARCHITECTURES 41

Figure 5.6: Path configuration for the dynamic libraries

to the shapefile format. It translates external definitions into objects to be displayed on a
derivative of the map browser interface.

It can be necessary to adapt the two directories for includeDirectories, for libraryDirec-
tories to the platform, observing that a regeneration can be possible based on this public
software.

5.3.2 Interface opening
By selecting the Tools menu from the main window, then choosing ”Universite... Ma-
pAccess” the new interface opens. This interface is quite similar to the map navigation
interface, at the exception at the left column. Having the interface open, by clicking Reset
values, then Refresh map, we obtain a default view on Brest city (figure 5.7).

5.3.3 Loading shapefile
The button Open shapefile brings a dialog where a .shx file must be selected The figure 5.8
shows Brest city map with more than 80 000 buildings represented as polyline 2D objects.

5.3.4 Browsing the city
The capabilities of the map browser exists in this preliminary tool. As exemple, one can
zoom and move the display view changing the level of details. The geographic coordinates
being preserved, it is possible to focus very precise situations to enable simulations and
computations. See figures 5.9 and 5.10.

42 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

Figure 5.7: Brest presentation before loading a shapefile

Figure 5.8: Brest presentation once the shapefile is loaded

5.3. LOADING BUILDING ARCHITECTURES 43

Figure 5.9: Brest university and river Penfeld after loading BMO shapefile, Google Maps

Figure 5.10: The same view as for figure 5.9, using OpenStreetMap.

44 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

Switching between map layout is possible using a dialog installed under the cache
control button. This dialog also allows to empty a cache used in the present software to
speed up access to distant map tiles.

5.4 Algorithms

5.4.1 Layers
The information displayed in this application is divided in two layers : the base map,
provided by a map server, and the network, locally computed. More generally, displaying
is composing an image from several information sources. The composition is understood
as a projection of differents layers. In that sense, the building computation explained in
section 5.3 is just a particular case of a general process. Network presentation and activities,
mobiles moving on their path are other cases.

5.4.2 Tiles of the base map
The map is divided into tiles, which are the same size (a square of side 256 pixels in our
application). When we put together adjacent tiles, we can build the map of an entire zone.
The system of tiles can be represented as a pyramid, according to the zoom level. At
zoom zero, there is only one tile, at zoom one, there are 4 tiles, at zoom 2, 16 tiles. The
computation of the number N of tiles given a zoom level Z is as follow:

N = 2Z .

The tiles are retrieved from a tile server, like Google map or OpenStreetMap. They are
downloaded by http client, the url gives the position of the tile over the map, and the zoom
level.

Tiles are portion of map, with a zoom level which gives more or less details on the area
covered.

5.4.3 The projection question
The Earth is spherical, whereas maps are printed on a plane surface. The method which is
used to transform spherical coordinates into orthogonal coordinates is called projection.

One question to be considered in the first rank is how a 3D topology can be represented
on a 2D surface. This is called the projection system, and one being used on most of the
Map Access software is Spherical Mercator. For this application, this projection transforms
geodetic coordinates (longitude and latitude) in meters. Thus, the global map is projected
into a square, which is divided into tiles. Tiles have the same size, usually 256⇥256 pixels.
The zoom level defines the number of tiles produced. At zoom 0, there is only one tile, at
zoom 1 there are 4 tiles, etc... There is a formula to convert spherical coordinates (longi-
tude and latitude, expressed in degree) into orthogonal coordinates (x and y, expressed in
metres). The formula to convert from one sytem to the other is as follow :

latLonToMeter: lat lon: lon

| mx my |
mx := lon * self originShift / 180.0.
my := ((90 + lat) * Double pi / 360.0) tan ln / (Double pi / 180.0).
my := my * self originShift / 180.0.
ˆmx @ my

Then, we have to find the tile corresponding of the (x, y) coordinates. First, we compute
pixel coordinates on the map, from the (x, y) coordinates. The formula in Smalltalk langage
is given below.

5.4. ALGORITHMS 45

Figure 5.11: A trip in Brest city, along a bus line, with a GPS data logger : the path of the
car where the tool was installed is printed in blue, the bus stops are indicated by the yellow
pins. The GPS is accurate enough to discern the both side of the street.

meterToPixel: xy zoom: zoom

| mx my res px py |
res := self resolution: zoom.
mx := xy x.
my := xy y.
px := (mx + self originShift) / res.
py := (my + self originShift) / res.
ˆpx @ py

As we know

5.4.4 Accuracy
The GPS device has a maximal accuracy of 5 m, thus the coordinates are given with 7
decimals. A small error in coordinates can lead to several metre shifts on the map. In order
to achieve correct calculus with this, we used fixed-point computation in Smalltalk. Thus,
the results are not rounded, which increase accuracy. In figure 5.11, we can discern the both
sides of the street, those data was provided by a 5-m accuracy GPS, which is the maximum
reachable for civilian use.

46 CHAPTER 5. A NETGEN-COMPATIBLE MAP BROWSER

Chapter 6

Physical modelling

Combining physical simulation and sensor network simulation allows to verify the accur-
racy of the sensing process in relation with the physical process. In most of the cases, the
two activities are independent, but there are known situations where a control loop exist.

This chapter will shortly discuss preliminary works where geographic data are extracted
(see chapter ??), analyzed, and processed to simulate the the physical process:

1. loop between graphical planning, simulation synthesis, and graphic interfface control
from simulation,

2. case of a mobile moving inside a set of sensors,

3. case of cellular automata representing physical process.

In these situations the physical process spread over 2D or 3D spaces, that are divided
into a number of adjacent cells. One solution to keep track of evolutions is to use massive
parallelism with a good computation candidate being cellular automata.

6.1 Binding simulator to the map browser
Figure 6.1 shows a view on a map interface connected to an Occam simulation. This is a
view of the Santander network retrieved in real time from http://smartsantander.eu,
with the sound network selected for display. Communication links are initially shown as
red line, but to demonstrate the simpulation effect, we switch to the green color for each
node sending a message.

It is noticeable that the small networlk at the bottom left is finished, while le big network
is still revealing information.

This section will explain how the simulation, and even real messages from real sen-
sors can interact with the graphic view. Figure 6.2 presents the system organization, with
messages multiplexed to an Occam relay for an external process running Smalltalk. In the
Smalltalk image, messages are decoded and actions are taken to display visually changes
from simulation.

6.1.1 Calling back the GUI
The architecture description code source need support from an Occam mechanism allowing
to fork external processes. The setup below will do, coupling a byte channel to the i/o
stream of this process.

PROC Smalltalk(CHAN OF BYTE in , out , err)

VAL [2][] BYTE Prog IS ["/usr/local/vw7.8.1nc/bin/linux86/visual", "./visualnc.im"]:

47

48 CHAPTER 6. PHYSICAL MODELLING

Figure 6.1: Feed back from concurrent simulation to Map Browser interface

Figure 6.2: System organization between simulator and graphical interface

6.1. BINDING SIMULATOR TO THE MAP BROWSER 49

VAL []BYTE arg IS "./visualCuda.im":
[2][100] BYTE Prog2 :
[1]ENVIRONMENT envArray:
INT result:
SEQ

-- nettoyer le tableau
SEQ i=0 FOR 100

SEQ
Prog2[1][i] := (BYTE 0)
Prog2[0][i] := (BYTE 0)

-- copier la chaine de commande
SEQ i=0 FOR SIZE Prog[0]

Prog2[0][i] := Prog[0][i]
-- copier la chaine argument
SEQ i=0 FOR SIZE arg

Prog2[1][i] := arg[i]
-- configurer l’environnement
proc.setenv (envArray[0], "VISUALWORKS" , "/usr/local/vw7.8.1nc")
-- demarrer smalltalk
out.string(Prog2[0],0,out)
out ! ’ ’
out.string(Prog2[1],0,out)
out ! ’*n’
proc.wrapper(envArray , Prog2 , in , out , err, result)

:

Inside the parallel construct, we now need to start a process that will fork a Visualworks
image outside. The MuxToST channel will send information from the Occam simulator
multiplexer to the external Smalltalk GUI.

[MaxNodes]CHAN OF BYTE toMux:
CHAN OF BYTE MuxToST:
PAR

Smalltalk(MuxToST ,stdout ,stderr)
Mux(toMux ,MuxToST)
Node(P1.in, P1.out ,0, toMux [0])
Node(P2.in, P2.out ,1, toMux [1])
Node(P3.in, P3.out ,2, toMux [2])

....

6.1.2 Passing contextual information to the simulator
.

For each process generated from NetGen, there is an entry in a varaible array. The code
below shows part of this array, where the data is simply the name of each process, as it
appears in the network specification.

This name is a minimum information to advertise a GUI or tracer about the identity of
an emitting process.

VAL [51][3]BYTE NetProcess IS ["P1 ", -- id: 1
"P2 ", -- id: 2
"P3 ", -- id: 3
"P4 ", -- id: 4
"P5 ", -- id: 5
"P6 ", -- id: 6
"P7 ", -- id: 7
"P8 ", -- id: 8
"P9 ", -- id: 9
"P10", -- id: 10

....
]:

The Mux relays information by sending the index of the channel, then copying the
entire line to the output.

50 CHAPTER 6. PHYSICAL MODELLING

PROC Mux([]CHAN OF BYTE muxTab , CHAN OF BYTE out)
BYTE c:
INT t:
INT t64:
SEQ i=0 FOR (MaxNodes)

ALT i=0 FOR SIZE muxTab
muxTab[i] ? c

SEQ
out.number(i,4,out)
out !’*t’
out ! c
WHILE c <> ’*n’

SEQ
muxTab[i] ? c
out ! c

:

6.1.3 Demuxing in Smalltalk
Lot of things can occur there by using Obectt oriented facilities for sensor attributes. In
this demonstrator, we just decode lines sent from Smalltalk, select the sensor, displays its
name, change colour all around, an place the mouse over its location.

A class MuxReader has been developped for this, and the system code testScan for
decodint on the stream is showne below:

testScan

| connect line info ugm i delay finished |
self allInstances do:

[:mr |
mr streamIn close.
mr streamOut close].

connect := self connect.
ugm := UIGoogleMap new.
ugm open.
(Delay forSeconds: 60) wait.
Transcript

cr;
show: ’starting ...’;
cr.

i := 0.
delay := 0.
finished := false.
[6 * 60 timesRepeat:

[(Delay forSeconds: 1) wait.
delay := delay + 1]] fork.

connect
process:

[[finished or: [connect streamIn atEnd]] whileFalse:
[line := connect streamIn upTo: Character cr.
info := connect scanLine: line.
finished := info size = 1.
finished

ifFalse:
[i := i + 1.
Transcript

show: info printString;
cr.

[ugm changeMousePositionFromName: (info at: 2)] value.
Processor yield.
(Delay forMilliseconds: 1000) wait]].

connect streamIn close.
connect streamOut close]

fork.
ˆconnect! !

Contents

1 Installation and first experiments 3
1.1 Smalltalk, the underlying development system 3

1.1.1 What is needed . 3
1.2 VisualWorks installation . 4
1.3 Creating an initial environment . 4
1.4 Creating a new project . 5

1.4.1 New image file creation . 5
1.4.2 New script creation . 6
1.4.3 Summary . 6

1.5 Connecting to Store . 6
1.5.1 Accessing a repository . 7
1.5.2 Loading packages . 7
1.5.3 Checking NetGen . 7

1.6 Summary . 9
1.6.1 Knowledge status . 9
1.6.2 More background, some useful tricks about Smalltalk 9

2 Building abstract networks 11
2.1 Network description . 12

2.1.1 Textual description . 12
2.1.2 Logic description . 13
2.1.3 Programming networks, and processing 13
2.1.4 Building networks by program . 15

2.2 Regular networks . 15
2.3 Selecting a sensor layout from a map . 15

2.3.1 Selecting sensor positions . 16
2.3.2 Building a net . 17
2.3.3 Logic presentation . 17

2.4 Summary . 17

3 Synchronous distributed behaviours using Occam 21
3.1 Installing kroc . 21
3.2 Checking Occam compiler: Hello world! 23
3.3 Parallel construct and channels in Occam 24

3.3.1 Sample ring5 behaviour . 24
3.3.2 Sample ring5 architecture . 25
3.3.3 Ring 5 has a synchronous behaviour 25

3.4 Observing execution, simulation traces . 25
3.4.1 Programming a trace multiplexer 26
3.4.2 Ring behavior with a trace . 27
3.4.3 Ring architecture with trace multiplexer 27

3.5 Architectures and Behaviors in NetGen framework 28

51

52 CONTENTS

3.5.1 Occam architecture description from NetGen 28
3.5.2 Behaviour description, first approach 29

3.6 Summary : flow for generated bidirectional ring 30
3.6.1 Specification and drawing . 30
3.6.2 Occam resulting architecture . 31
3.6.3 General formulation for behavior 31
3.6.4 Exercise . 32
3.6.5 Exercise . 32

4 Distributed algorithms simulation 33
4.1 Random numbers in Occam . 33

5 A NetGen-compatible map browser 35
5.1 Moving on the map . 35
5.2 Loading networks . 35

5.2.1 Scenario for loading informations 36
5.2.2 Loading a network . 37
5.2.3 Network configuration . 37
5.2.4 Network generation . 38

5.3 Loading building architectures . 38
5.3.1 Checking the configuration . 39
5.3.2 Interface opening . 41
5.3.3 Loading shapefile . 41
5.3.4 Browsing the city . 41

5.4 Algorithms . 44
5.4.1 Layers . 44
5.4.2 Tiles of the base map . 44
5.4.3 The projection question . 44
5.4.4 Accuracy . 45

6 Physical modelling 47
6.1 Binding simulator to the map browser . 47

6.1.1 Calling back the GUI . 47
6.1.2 Passing contextual information to the simulator 49
6.1.3 Demuxing in Smalltalk . 50

