
Simulation et modélisation de diffusions physiques
Rapport de TER

AHMED Ahmed
Master 1 Informatique

Université de Bretagne Occidentale
Encadrement B.Pottier, LabSTICC

August 8, 2013

Contents

1 Environment modeling and Cellular Automata 2
1.1 Environment modeling . 2

1.1.1 Environmental Systems Features 2
1.1.2 Modeling Techniques . 4

1.2 Cellular Automata . 4
1.2.1 Neighborhood . 4
1.2.2 Application of Cellular Automata 5

2 CUDA Programming 7
2.1 Introduction to GPU and GPU Programming 7
2.2 Programming in CUDA . 7

3 Case Study - Forest Fire Spread Model 13
3.1 Background . 13
3.2 Hardware and Software . 15
3.3 Parallel Forest Fire Model . 15

3.3.1 Data Structure . 16
3.3.2 Input Methods . 17
3.3.3 Transition Rule . 18
3.3.4 RunSimulation function . 21
3.3.5 Main function . 22
3.3.6 Output . 22
3.3.7 Execution Time . 22

4 Forest Fire Pipeline Version 27
4.1 Sliced Forest Fire Model . 27

4.1.1 Difficulties in the sliced approach 27
4.1.2 Coding . 29

4.2 Pipeline Version . 34
4.2.1 Functionality of the threads . 36
4.2.2 Execution Time . 37

5 Conclusion 39

A Machine Specification 45

B Forest Fire Model Version 1 46

C Forest Fire Model Version 2 63

1

Acknowledgements

During the ten months I have been at the university of Brest and during the TER, I have
been influenced by many people around me, who have shaped the way I think and taught me
a lot about how to do research. Among those, I want to first thank Prof. Bernard Pottier for
providing me with guidance and support, and always the encouragement to try something
new and different. Special thanks to Mr.Pierre Yves Lucas for his help in diplaying the
map and integeration with the simulation. Thanks for all the teaching stuff members in
the IT departement for the their help and support specially in the language.Lastly, I would
like to thank Master M1 students with whom I have a good chance to work and exchange
experience.

Introduction

The environment around us has many phenomena and has different behaviors according to
different parameters, biological, chemical, physical, etc. To represent a simple and abstract
reality of this environment we use a concept called environmental modeling. The environ-
mental modeling deals with many environmental problems such as air pollution, diffusion
of disease, animal behavior and so on. However there are some difficulties in modeling the
environment due to several reasons such as the variation and incompatibility.

There are many techniques to simulate a model such as differential equations, cellular au-
tomata and multi-agent approach. We will focus on our work on the cellular automata, that
is dynamic model which is spatially and temporally spate. The cellular automate update
their state with time, where each cell has a new state based on its state and the state of its
neighbors. The update is based also on some rules defined previously. When simulating
any model, the most important problem that faces us is the execution time.

In many environmental problems we will work on a model that may cover a big geograph-
ical area and thus we require a large numbers of cells to represent that system. For these
cells to update their state we will need a long execution time which may exceed days in
some models. According to Florent Arrignon, a specialist in environmental modeling, in
some models of one million cells, it requires about one week to simulate it. But fortunately
due to the increased performance in the computers and more precisely on the GPU, we can
simulate a cellular automata environmental model in parallel which will result in enhanced
performance result.

Besides, there are different approaches to deal with large blocks of data such as OpenCL
and CUDA. In our case study we are addressing a general problem of Forest Fire Spread us-
ing CUDA language and discuss different approaches to enhance the performance.

Road Map

Chapter 1 provides a brief introduction on environmental modeling, its features and tech-
niques. Moreover, it we will inroduce the cellular automata, the different approaches to
deal with the cell neighbors and examples of some application of cellular automata. Chap-
ter 3 will discuss the different programing approaches on processing large block of data
ion parallel and will explain in details the CUDA language. In chapter 4, we will begin
a case study environmental model of Forest Fire Spread with the implementation a paral-
lel model and discussed it in terms of performance. Finally chapter 5 a more enhanced
pipleine parallel version will be implemented. After that we have the conclusion, future
work, bibliography and lastly but not least the appendix which include all the code.

1

Chapter 1

Environment modeling and
Cellular Automata

1.1 Environment modeling

Modeling represents a simple and abstract reality. It allows us to understand a particular
feature of the world as we build textual, graphical and other models of reality. With the
increased performance of digital computers we can handle complexity in our models by
developing well elaborated software. Modeling has great importance as it allows us to
understand many aspects around by using data and mathematical representation of any
thing around us, any object, person, air pollution, transportation and so on. Modeling can
be viewed from many perspectives but we will focus on environmental modeling.

Environmental modeling is used to model environmental phenomena such as biological,
physical and chemical phenomena by use of computers and mathematics. There exist
many examples, such as plants pollution, air pollutions, fire diffusions, renewable resources
management (water, tree, wood). Furthermore environment modeling is used to examine
broad range of environmental issues such as the global warming caused by the industrial,
agricultural practices and certain waste management. Many discipline mostly chemistry,
physics, biology, biochemistry, geology and others contributes in the understanding these
models.

According to [1], there exist different types of modeling approach which requires an under-
standing of the purpose of modeling different environmental systems. The types of model-
ing approach used are affected by a number of features of environmental systems.

1.1.1 Environmental Systems Features

There are many physical, biological and chemical environmental systems that share com-
mon features between them. As stated by [1] we can divide and describe these features
to:

1.1.1.1 Complex Non Linear Interactions

The environmental systems consist of complex nonlinear interaction between many pro-
cesses, physical, biological, chemical, social and economic. For example, water quality in

2

a stream relies upon land use and management in a catchment. However, decisions on land
use will depend on land suitability, which is a function of rainfall, temperature, topography,
and soils, as well as on economic, social and cultural features of the individual catchment.
The interaction between these different processes is complex and often poorly understood.
This complexity can mean that it may be difficult to capture many of the underlying causes
and effects of environmental phenomena. Thus when modeling simplifying assumptions
about the way in which these factors interact must generally be made.

1.1.1.2 Heterogeneity of System Features

Many scales are there to measure the characteristics of the environmental system. These
scales differ spatially and temporally. The spatial scales may be very small in nanometers
to very large scales in multiples of kilometers as shown in figure 1.1

Nanometer Millimeters Meters Kilometers

Figure 1.1: Different Spatial Scales

Furthermore, the temporal scales may vary from part of milliseconds to hours, days and
years as shown in figure 1.2

Milliseconds Minutes Days Years Decades Centuries

Figure 1.2: Different Temporal Scales

These features are difficult to characterize and leads to many errors and uncertainty, mostly
when the observed data are dynamic and the frequency at which data is sampled is inade-
quate.

1.1.1.3 Incompatible Scales

It is difficult to create generic environmental models due to the variation of the tempo-
ral and spatial characteristics.“For example, the system response to a rainfall event in a
surface water system such as a river or stream may occur over hours or clays, while the re-
sponse of the groundwater system to this recharge event may occur over a number of years,
even though these two systems are linked. The characteristic temporal scales of these two
systems are very different, so that a model linking these two systems will have to find a
compromise between these two scales” [1]. Thus scales are very important feature in the
modeling of the system.

1.1.1.4 Inaccessible or Unobservable System Processes

Some system scales are too small or too large to be measured or observed, such as some
features of oceanic systems which cover thousands of kilometers. Thus, due to the difficulty
to acquire exact measurements and observation of the process, the understanding of the
model is approximated and hence affect the accuracy of the model.

3

However, nowadays due to the revolution of information technology, telecommunication
and electronics, there are a variety of tools - wireless sensors, water proof sensors, remote
sensors, and climate sensors, high detection sound sensors - that help modelers to achieve
their goals with approximately accurate results.

1.1.2 Modeling Techniques

There are known techniques to model systems. We have the Differential equation approach
which is widely used, but is suitable only for systems with limited numbers of parameters
and small scales. Furthermore, there exists two other approaches Cellular Automata and
Agent-based models, used for more number of parameters and to describe spatially hetero-
geneous systems. In this project we will focus on cellular automata which are introduced
in next section.

1.2 Cellular Automata

Cellular Automata mostly abbreviated “CA”is a discrete dynamic model which is tempo-
rally and spatially discrete. Spatially discrete, it is composed of a number of cells placed
on a regular grid where each cell is described by a state chosen from a finite set. Tempo-
rally discrete, at each time the cell changes its state based on a transition function which
takes into account the state of the local neighbors of the cell. CA are able to solve many
algorithmic problems, so they can be considered as computational systems [2].

1.2.1 Neighborhood

There exist many shapes for the CA, the simplest forms being the one dimensional and two
dimensional grids. In the one dimensional elementary CA, the neighborhoods are the left
and right cells. Whereas in the two dimensional model, we have several types for neigh-
borhood, some of them are Moore neighborhood and Von-Neumann neighborhood.

In Moore neighborhood, the neighborhoods of a cell are all the cells surrounding it. It
includes the north N, south S, west W, east E, north-west NW, north-east NE, south-west
SW and south-east SE cells. Figure 1.3 below represents the Moore neighbors of the black
cell.

Figure 1.3: Moore neighborhood

Since we have eight neighbor cells and one center cell, then we have nine cells in total
which produce 29 pattern based on the rules of the transition function.

Instead, the Von-Neumann neighborhoods are the north N, south S, east E and west W
adjacent cells. Thus, we have 25 patterns for the states. Figure 1.4 represents the Von-
Neumann neighborhood.

4

There are some models using a specific neighborhood structure, for example in fluvial
dynamics models presented by [3], the structure is of 3 to 11 or more cells in one direc-
tion.

Figure 1.4: Von-Neumann neighborhoods

One of the obvious problems is the cells in the edge. There are different approaches to deal
with it, but we will consider one approach that we will use in our project. We will consider
a circular approach which can be more clarified by an example. In figure 1.5, the neighbors
of the left edge red cells are shown for both the Moore and Von-Neumann types.

Figure 1.5: Circular neighborhoods example 1, left figure:Moore neighborhood - right fig-
ure: Von-Neumann neighborhoods

Another example to fix the idea is shown in figure 1.6

Figure 1.6: Circular neighborhoods example 2, left figure:Moore neighborhood - right fig-
ure: Von-Neumann neighborhoods

After introducing the cellular automata we can summarize its characteristics as follows

1. States —Selected from finite set

2. Transition rule —how the cell state will change based on the state of its neighbors.

3. Neighbors —connection between cells

1.2.2 Application of Cellular Automata

The Cellular Automata are used widely in many applications for sake of describing many
phenomena and real problems. A sample set of applications is given below.

• Electric Power Simulation[5], which simulate the flow of power on a power grid.

• Cryptography and Random Number Generation [6], The CA are used to generate
random numbers used in some cryptographic algorithms such as Block cipher.

5

• Implementing Parallel Computers, some cellular automata have the property of uni-
versal computation, which means that in principle they can perform arbitrary com-
putations. According to Wolfram [7], this property may be of more than theoretical
interest, and might allow cellular automata to form an architectural model for build-
ing practical parallel-processing computers [6]

• Modeling and Simulation, Cellular automata are more efficient in modeling many
physical, chemical and biological systems due to the similar mechanism between
these systems and CA. Thus, cellular automata are especially suitable for modeling
any system that is composed of simple components, where the global behavior of
the system is dependent upon the behavior and local interactions of the individual
components [6]. Some examples of cellular Automata are:

– Forest Fire Spread

– Invasion and diffusion of the potato tuber moths [8]

– Crystallization [6]

– Urban development [6]

– Fractal growth of biological organisms [9]

– Fluvial changes model [3]

We will work on a case study of Forest Fire Spread which will be explained in details in
chapter 3, but before that we will introduce in chapter 2 the essentials in CUDA program-
ming.

6

Chapter 2

CUDA Programming

2.1 Introduction to GPU and GPU Programming

Graphic Processing Units (GPUs) are massively multithreaded - many core chips composed
of hundreds of cores and thousands of threads. With this large numbers of cores GPU
provide the capability to process large blocks of data in the parallel, thus GPUs are widely
used to in parallel processing. They are used to implement many complex and challenging
problems in modeling and simulation such as climate modeling, diffusion modeling, in
finding medical cures for some disease and so on.

There are different companies that produce GPUs, such as NVIDIA, ATI/AMD, INTEL
and others, the common standard for general-purpose parallel programming of heteroge-
neous systems between these GPUs is OpenCL (Open Computing Language) [4]. It offers
the software developers the capability to write efficient, portable code for high-performance
servers, desktop computer systems and handheld devices using a diverse mix of multi-core
CPUs, GPUs, Cell-type architectures and other parallel processors such as DSPs. How-
ever there exists another programming language for NVIDIA GPUs. NVIDIA invented
CUDA (Compute Unified Device Architecture) for a parallel computing platform and pro-
gramming model. It enables dramatic increases in computing performance by harnessing
the power of the graphics processing unit (GPU) [10], thus allowing developers and re-
searchers to use this computing power to solve many problems.

CUDA provides a set of extension to C/C++ language which allows programmers to de-
velop parallel algorithms. Both the CPU and the GPU are used for computations, thus
CUDA support heterogeneous computation. The sequential code is executed on the CPU
whereas the parallel code is executed on the GPU each with its separate memory resources.
There are some differences between these languages, which can be summarized according
to [12] as summarize in figure 2.1.

In our case study we will be using CUDA, and we will explain its essentials in the next
part.

2.2 Programming in CUDA

We will study the essentials of CUDA using an example and explain all its parts. The
code is written in .cu file and compiled using nvcc compiler, which can be downloaded
from NVIDIA website. The nvcc generates both instructions for host and GPU as well as

7

CUDA OPENCL

Advantages:

Marketed better. Support many types of processor

architectures.

Developer-support in one package. Completely open standard.

More built-in functions and features.

Disadvantages:

Only works on GPUs of NVIDIA. Supplied by many vendors, thus not provided as

one packet or centrally orchestrated.

Figure 2.1: CUDA vs OpenCL

instructions to send data back and forwards between them. We need also to distinguish
between these words,

1. HOST, it indicates the CPU.

2. DEVICE, it indicates the GPU.

3. KERNELS, they are C functions, when called are executed N times in parallel by
N threads which allow to perform a single task on multiple data which leads to the
Single Instruction Multiple Data (SIMD) architecture.

A simplified motherboard architecture with many missing details is shown in figure 2.2.
The figure is divided in two parts, the left part for the Host and the top right part for the
Device. Each of the host and the device has his own separate memory, the device cannot
access the host main memory and the host cannot access the device memory. Thus we
need to explicitly transfer the data between the two memories through the PCI bus (or
PCIExpress variants).

Figure 2.2: Simple motherbard block diagram

In listing 2.1 a simple CUDA program is given to illustrate how CUDA works (this is
extracted from NVIDIA CUDA programming guide). The main functionality of this code

8

is to increment each element of a float array by 1 on the GPU.

Listing 2.1: Increment Array

1// incrementArray.cu
2#include <stdio.h>
3#include <assert.h>
4#include <cuda.h>
5void incrementArrayOnHost(float *a, int N)
6{
7int i;
8for (i=0; i < N; i++) a[i] = a[i]+1.f;
9}
10
11__global__ void incrementArrayOnDevice(float *a, int N)
12{
13int idx = blockIdx.x*blockDim.x + threadIdx.x;
14if (idx<N) a[idx] = a[idx]+1.f;
15}
16
17int main(void)
18{
19float *a_h, *b_h; // pointers to host memory
20float *a_d; // pointer to device memory
21int i, N = 10;
22size_t size = N*sizeof(float);
23// allocate arrays on host
24a_h = (float *)malloc(size);
25b_h = (float *)malloc(size);
26// allocate array on device
27cudaMalloc((void **) &a_d, size);
28// initialization of host data
29for (i=0; i<N; i++) a_h[i] = (float)i;
30// copy data from host to device
31cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
32// do calculation on host
33incrementArrayOnHost(a_h, N);
34// do calculation on device:
35// Part 1 of 2. Compute execution configuration
36int blockSize = 4;
37int nBlocks = N/blockSize + (N%blockSize == 0?0:1);
38// Part 2 of 2. Call incrementArrayOnDevice kernel
39incrementArrayOnDevice <<< nBlocks , blockSize >>> (a_d, N);
40// Retrieve result from device and store in b_h
41cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
42// check results
43printf("checking \n");
44for (i=0; i<N; i++) assert(a_h[i] == b_h[i]);
45for (i=0; i<N; i++) printf("%f %f\n", a_h[i] , b_h[i]);
46// cleanup
47free(a_h); free(b_h); cudaFree(a_d);
48}

Firstly, in order to write and compile CUDA code we need to add its header as shown in
line 4. The code is composed of a part that is executed sequentially and a part that executes
in parallel invoked from the sequential part.

The lines 5 to 9 define a sequential incremental function which takes as input a pointer to
the array to be incremented and the size of the array. This function will be executed on the
host. The same functionality of this sequential function can be achieved by the kernel given
in lines 11 to 15. So, how we define a kernel? A kernel can be defined by annotating the
function name to be executed on parallel by the keyword global . It indicates that the
kernel is to be invoked from the host. The kernel needs an argument which indicates the
number of threads to be executed and this is achieved by the parameter N in the parameters
list.

9

Inside the kernel we need to specify the thread Id to be used. There are different hierarchy
for threads, for convenience, threadIdx a built in variable is a 3-component vector, so that
threads can be identified using a one-dimensional, two-dimensional, or three-dimensional
thread index, forming a one-dimensional, two-dimensional, or three-dimensional thread
block. This provides a natural way to invoke computation across the elements in a domain
such as a vector, matrix, or volume.

There is a limit on the number of threads per block which is currently 1024 for the recent
GPUs. However the kernel can be executed by multiple thread blocks which lead to a
number of threads equal to number of blocks multiplied by the number of threads per block.
Also the blocks are organized into one-dimensional, two-dimensional, or three-dimensional
grid of threads. Blocks are accessed through the built-in variable blockIdx.

The above example uses a 1D thread hierarchy. To understand how to find the thread id, we
need to refer to some variables in the main function. The size of the array is 10 specified
by the value of N and the number of threads per blocks is given by the integer blockSize,
thus the number of blocks can be found by the following line.

int nBlocks = N/blockSize + (N%blockSize == 0?0:1);

The part after the plus sign is used to assure that the number of blocks is sufficient for the
number of elements, for example, if N and blockSize are 10 and 4 respectively, the number
of block will be 2 +1=3. This is shown in figure 2.3

Figure 2.3: 1D Thread hierarchy

Now back to the kernel, to find the thread id, we make us of line 13, thus the values of the
thread id (idx) begin from 0. However, we need to assure that not more than N threads are
to be executed, this can be achieved using if statement in line 14. The table shown in figure
2.4 below shows the idx (thread id) calculated the input arrays values and the final result in
the array.

Figure 2.4: Increment array result

After we had explained the kernel we will begin the code of the main function. The line
19 defines pointers to the host memory and allocates them in lines 24 and 25. The pointer
a h is used to hold the input to the kernel and b h will hold the result back from the kernel.

10

The line 20 will declare a pointer to the device memory. The notation h indicate the host
and d indicate the device. Also we need to allocate memory on the device this is achieved
using cudaMalloc as given in line 27. Its interface is as follows

cudaError_t cudaMalloc(void ** devPtr , size_t size);

It allocates size bytes of linear memory on the device and returns in *devPtr a pointer to
the allocated memory [11]. The memory is now allocated to store the data, so in line 29
we initialize the data on the allocated memory for a h. After that we copy the data from
the main memory to the device memory using cudaMemcpy (line 31), the interface for the
function is as follows

cudaError_t cudaMemcpy(void* dst, const void* src, size_t count , enum
cudaMemcpyKind kind);

It copies count bytes from the memory area pointed to by src to the memory area pointed
to by dst, where kind is one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, which specifies the direc-
tion of the copy.

The task of sending the data from host to device is illustrated in figure 2.5.

Step 1-Send

data to device

CPU GPU

Figure 2.5: Send data to device

Now as the data is in the GPU, we need to execute the kernel (line 39) as shown in figure
3-5, To invoke the method we write the kernel name followed by <<<nb , nt >>>which
takes two values, the number of blocks and the number of threads per block. After that it is
followed by the arguments of the function.

CPU GPU

Step 2- Execute

the Kernel

Figure 2.6: Execute the Kernel

After the execution of the kernel we need to copy the result back from the device to the
host as shown in figure 3-6, this can be achieved also by cudaMemcpy utilized with the
appropriate direction (line 41).

11

Step 3-Send

result to host

CPU GPU

Figure 2.7: Send result from device to host

Lastly, we need to free the memory allocated on the device and host (line 47).

Thus we can summarize the main steps after the allocation of memory required to execute
the kernel and before cleaning the memory as follows,

1. Transfer data from host to device

2. Invoke the kernel with the appropriate parameters

3. Transfer the result back from device to Host.

In the next chapter we will begin a case study of Forest Fire Model using CUDA language
and we will use all the steps explained above.

12

Chapter 3

Case Study - Forest Fire Spread
Model

3.1 Background

This model is used to simulate the spread of fire in a forest. In reality there are many
factors that affect the spread of fire such as humidity, trees density, wind . . . etc. In our
project and implementation we will consider a simple model of Forest Fire with simple
transition rules. The model is represented using 2D cellular automata with Von-Neumann
neighborhood. The possible states for the cells are empty, tree, fire and ash. The transition
takes place if one cell is fired, and the fire begins to spread. The transition rule is reproduced
from a sample Fire Automata in CORMAS[8]:

If a cell is tree at time t, it will become fire at time t+1, if and only if one of its four
neighbors is on fire at time t. If the cell is fire at time t, it will become ash at time t+1. If
the cell is ash at time t, it will become empty at time t+1.

Figure 3.1 shows a simple example of Fire Automata [8], where the colors white, green, red,
and gray represents the states empty, tree, fire, and ash respectively. The figure represents
the forest at some type t, where a fire begins in a tree, we will name it state S0.

Figure 3.1: Forest Fire at time t (S0)

At time t+1, state S1, the Forest Fire will be as shown as figure 3.2, where we observe that
the two trees catch fire and the fire is changed to ash.

Figure 3.3 shows the evolution of the forest from state S2 to S7 and how the fire spread in
the forest.

13

Figure 3.2: Forest Fire at time t+1 (S1)

Figure 3.3: Fire Spread Evolution

14

After some time we recognize that the fire spreads and the empty area increases as shown
in figure 3.4. The fire still spreads as there are trees neighbors to fire.

Figure 3.4: Forest Fire after several turns

In this project, the case study we are going to implement this Forest fire model on the GPU
and discuss it in terms of performance and optimization. It will be implemented using two
different approaches. The first approach is normal massive parallel model, and the second
approach is its extension to a pipelined parallel model.

3.2 Hardware and Software

The forest Fire model will be implemented on a Linux machine with NVidia graphics card
GeForce GTX 680. The machine is equipped with Intel(R) Xeon(R) CPU E3-1240 V2 @
3.40GHz processor which is 64 bit CPU, but the kernel used is 32 bit (i686). Besides, the
machine is installed with CUDA SDK to develop CUDA applications. The details of this
card are given by executing a sample CUDA program name “deviceQuery’ ’, the main
details are given below and the rest are given in appendix A.

• Global Memory: 4GB (4294639616 bytes)

• CUDA Cores : 1536

• Maximum number of threads per block: 1024

As we have 1536 CUDA cores, than our kernel is capable to execute 1536 instructions at
the same time, which in turn produce considerable speedup of the problem processing. We
need to know the number of threads per block as it will be used in the code, and thus the
max value that can be chosen is 1024. The global memory available in the GPU is 4GB,
which allow storing 1073741824 integer value, which is exactly equal to 32768 * 32768
integer value. Finally to compile CUDA programs we will use nvcc compilers as explained
in chapter 2 which support C/C++ extension.

3.3 Parallel Forest Fire Model

In this model we will simulate the forest fire spread. The forest states are empty, tree, fire,
ash represented by values 0, 1, 2, and 4 respectively. The program has two input methods,
the first way asks the user to specify a map BMP image, after that the program reads this
image, analyzes its information, size and data and generate initial forest state based on the
green color detected in the image, whereas the second way randomly generate a forest. We
will explain the details of these input methods later. After we have the forest states, a fire
is generated randomly, and the forest state is sent to the GPU. Then the transition kernel is

15

invoked to apply the transition rules explained previously and the result is sent back to the
CPU, in order to be displayed. The transition function will be executed a number of times
specified by the user and the evolution of the forest will be displayed on the console.

In the following part we will explain the important parts of the code

3.3.1 Data Structure

The forest is represented by a struct image composed of two integer variables, width,
height to hold the width and height respectively of the forest, and an array to store the
forest state named gridCellState. The array is presented in row − major order [11], i.e. the
two dimensional array are represented in a linear 1D array. To clarify the row—major order
here is a simple example, suppose we have a forest of size 4 * 4, with the values stored in
a two dimensional array as shown in figure 3.5.

Figure 3.5: 4*4 Forest grid

Normally the array can be accessed using two indexes, one for the row and one for the col-
umn. But fortunately the values are stored contiguously in the memory as shown in figure
3.6, thus we can define a one dimensional array to hold the same data of two dimensional
arrays and distinguish the elements using an appropriate indexing formula.

Figure 3.6: Two Dimensional Arrays memory allocation

16

The one dimensional array can be accessed in two dimensional way using the following
formula

Index = NumOfColumn * row_index + column_index.

Back to the struct definition, the listing below displays the record that we will use in our
case study.

Listing 3.1: struct image

1struct image
2{
3int width; //to hold the number of rows of the grid
4int height; //to hold the number of columns of the grid
5int *gridCellState; // to hold the forest state
6};

We will use this struct to declare four pointers of struct image.

• Img, img d: represent the forest in time “t” on the host and device respectively.

• imgTemp, imgTemp d: represent the forest in time “t+1” on the host and device
respectively.

These pointers are allocated on the host. After that we need to allocate the required memory
to hold the gridCellState. For img–>gridCellState and imgTemp–>gridCellState, it will be
allocated on the host whereas for img d–>gridCellState and imgTemp d–>gridCellState
it will be allocated on the device.

3.3.2 Input Methods

The first input way asks the user to specify a map BMP image, then if the image file is read
successfully, the width and the height information are extracted from the image header,
these information help us to get the size of the forest and stores them in the img pointer.
Furthermore, the width and the height are used to allocate the required memory to store
the forest states. Then the program analyzes and extracts the RGB color information and
compares it to a certain reference color. The reference color in our case is dark green,
similar to Google map forest color. The values for the reference color are given in listing
3.2

Listing 3.2: Reference colors

1//The tree reference color
2#define RED_REF 65
3#define GREEN_REF 75
4#define BLUE_REF 65
5//The threshold used in detection
6#define THRESHOLD 30

The algorithm to detect the color uses Euclidean distance to compare the color of the image
pixel to the reference color. If the value detected is within a threshold, then we found a tree,
thus we put in state 1. In the other case we put zero for the state. An important point to
consider while reading BMP files that the colors are stores in this order, blue, green and
then red. A portion of the code for is shown in listing 3.3.

Listing 3.3: Part of ReadBMP function

1//store the width
2img->width= width;
3img->height=height;

17

4//allocation on the host
5//allocate memory for the forest states at time t;
6img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof (int));
7
8//3 bytes per pixel
9int size = 3 * img->width * img->height;
10unsigned char* data = (unsigned char*)malloc(size); // allocate 3

bytes

per pixel
11fread(data , sizeof(unsigned char), size , file); // read the rest of

the

data at once
12fclose(file);
13
14//detect color based on ecidian distance;
15
16for(int i =0 ; i<size; i+=3){//height
17//Red indeed at i+2. Green indeed at i+1, Blue indeed at i,

the

order in the file is B, G , Red
18distance = sqrt(pow((data[i+2] - RED_REF),2) + pow((data[i

+1] -

GREEN_REF),2) + pow((data [i] - BLUE_REF),2));
19state=0;
20if(distance < THRESHOLD)
21{
22state=1;
23}
24else state=0;
25//i is 3 times more
26img->gridCellState[(i/3)]=state;
27}

The second input method asks the user to specify the width and the height of the image
and randomly generate a forest state. The number of trees generated with respect to empty
ground can be achieved using a probability constant PROB. We have implemented different
methods for this initialization, one that executes on the CPU and the other can initialize a
forest on the GPU. The details of this function can be found in appendix B.

3.3.3 Transition Rule

The kernel TransitionFunc() is the main function to be executed on the GPU. It takes as
input the state of the forest in time t and produces the new state to be used in time t+1. The
output produced is based on the transition rule explained at the beginning of the chapter
and Von-Neumann neighborhood explained in chapter 2. Listing 3.4 shows the transition
function code and a simple example of forest state shown in figure 3.7 will be used in the
discussion of this transition function.

Listing 3.4: Transition function

1//Function for transiton rule
2__global__ void transitionFunc(int *grid , int *bufferGrid , int width , int

height){
3//check the cell's 4 neighbors
4//Northj, south, east, west
5int cellState;
6int north , east , south , west;
7int i;

18

8i= blockIdx.x * blockDim.x + threadIdx.x;
9if(i<height*width){
10//The north neighbours of the first row are the one in the last

row, else the row above
11north= ((i-width)<0) ? (height*width) - width + i : i-width;
12//south neighbour of the last row are the first row, esle the

row below
13south= (i+width) >= (height*width) ? ((i+1)%(height*width)) : i+width;
14//here we need to check if the east neighbour doesnot exceed the

right border, if so its neighbour
15//is the leftmost element in he same row
16//to get in which row we are, we use (i+width)/width
17east = ((i+1) >=(((i/width)*width)+width)) ? ((i)/width)*width:i

+1;
18//west
19west = (i-1) <((i/width)*width) ?((i/width)*width)+width -1 : i-1;
20
21//Calculating the new states
22
23if(grid[i] ==0) cellState=0;
24else if (grid[i] ==1){
25
26if(grid[north] == 2 || grid[south] ==2
27|| grid[east] ==2 || grid[west] ==2

){
28cellState=2;
29}
30else{
31cellState=1;
32}
33}
34else if (grid[i] ==2) cellState= 3;
35else cellState= 0;
36
37//Store the new state of time t+1 in bufferGrid
38bufferGrid[i] = cellState;
39}
40}

Figure 3.7: Forest Fire State (5*5)

Line 8 is used to find the thread id, as explained in chapter 3. Then we have an if statement
that ensure that no more than the required threads is executed. At line 11 to 19, we begin
to find the index of neighbors for the currents cell. The neighbors index of the current cell
are stored in the integer variables north, south, west and east.

As we explained previously the forest state is stored in row-major order, so the north neigh-
bor of the current cell is the current cell index minus the width. For example, the north
neighbor of the fired state at index 11, is the cell at index 11-5=6. This is illustrated figure
4-6. In the same way, the south neighbor of the current cell is the current cell index plus the
width, remain with the same example, the south neighbor index is 11+5=16. The east and

19

west are easily achieved by simply adding and subtracting 1 respectively from the current
cell index. Figure 3.8 shows a cell with its neighors.

Figure 3.8: Normal Neighbor indexing

Another problem is how to compute indexes of the neighbors for the cells on the edges.
As we explained in chapter 4, we will use a circular approach. For example, if the current
cell is the cell indexed 0, and then its north neighbor is the cell in the last row of the same
column. This can be achieved by having the image size (width*height) minus the width
plus the index of the current cell, thus for the first element the north neighbor is (5*4)-
5+0=15. It is illustrated in figure 4-7. Furthermore for the same cell the west neighbor is
rightmost cell in the same row, refer to figure 4-7. Thus we need first to identify the row:
this can be achieved by finding the floor of dividing the current cell index by the width. The
next step is to find the starting index of the left-most element in the row, and this can be
achieved by multiplying the row index by the width, finally we add the width to this starting
index of the current row and subtract one. The expression can be written as:

(Floor(i/width) * width) + width -1

Thus if the current cell is 0, the west is (floor(0/5)*5) + 5 -1 = 4. However there is no
problem for the west and south neighbors for this cell. A simple example in figure 3.9
illustrate the idea.

Figure 3.9: North and west neighbor indexing for edge cell

It remains the problem of south neighbors for the cells in the last row as well as the east
neighbors for the cells in the right edges. For example, if we are at cell indexed 19 then the
south neighbor would be the cell on the first row on the same column indexed 4. This can
be obtained by the following expression,

(i+width)mod(width*height)

Where i is the current cell index and mod is the rest of division. Moreover the east neighbor
is the cell on the left-most on the same row. It is illustrated in figure 3.10 and can be found
by

20

Floor (i/width) * width

Figure 3.10: South and east neighbor indexing for edge cell

So as we know how to calculate the neighbors, it is now a necessity for the code to check if
the cell is in an edge and thus to use the appropriate edge expression. Otherwise the normal
neighbor expression is applied. After the neighbors index has been found, we straight
forward check the state of the cell according to the transition rules specified above and
hold the new state of the cells in a new array called “bufferGrid” for the next step in time
t+1.

3.3.4 RunSimulation function

As we described the data structure and transitonFunc which is the kernel, we implemented
this function that is responsible for each iteration in manipulating the forest on the GPU.
Its main tasks are as follows:

• Copy the forest state from the host to the device.

• Execute the transition function, i.e. the kernel, and produce the new state in
imgTemp d–>gridStates.

• Copy the new state back from device to host

• Make the new state available as input for the next iteration by invoking the swapGrid
method

The code in listing 3.5 translates the previously described task.

Listing 3.5: runSimulation function

1void runSimulation()
2{
3int nBlocks = (img->width*img->height)/BLSIZE + ((img->width*img->height)

%BLSIZE ==0?0:1);
4//copy data from host to device
5cudaMemcpy(img_d ->gridCellState ,img->gridCellState ,size_image1 ,

cudaMemcpyHostToDevice);
6transitionFunc <<<nBlocks ,BLSIZE >>>(img_d ->gridCellState , imgTemp_d ->

gridCellState , img->width , img->height);
7//copy data back from device to host
8cudaMemcpy(imgTemp ->gridCellState ,imgTemp_d ->gridCellState ,

size_image1 ,cudaMemcpyDeviceToHost);
9//store the new state in grid
10swapGrids(img->gridCellState , imgTemp ->gridCellState);
11}

21

3.3.5 Main function

This main function firstly allocates the required memory both on the host and the device.
After that the forest is generated randomly or by reading a map as explained previously.
Then A fire is generated randomly using generateFire() function to a number of trees
specified in the directive FIREDTREES after the first step. The next step is to invokes the
runSimulation function. There are two approaches to iterate the simulation, we can either
use a “for loop” for a number of step, or as we will be using the OpenGL (Open Graphics
Library), we have a function called “glutMainLoop()” which call the “display()” function.
Then the display function calls the “runSimulation()” function and these successions of
function calls continues without stop until the user take an action by closing the window.
Finally we need to clean the memory. The code is shown in appendix B. However the
details of the openGL code are not explained in this report (it is borrowed from CUDA
sample programs).

3.3.6 Output

The figures 3.11 to 3.13 below shows the output for the randomly generated forest. In the
first figure we found that 3 places has fire marked by circle. Then the second small figure
shows 3 steps of the middle fired region. And the third figure after the spread of the fire in
the whole forest.

Figure 3.14 to 3.15 shows the output of an image map of Brest city france when fire is
generated in this green area.

3.3.7 Execution Time

To evaluate the parallel version execution time, we have compared it with the sequential
version execution time. The figure 3.17 represent this execution time where the x axis has
size values of the forest and the y axis the time in seconds. For each forest we execute it
a number of time equal to 2*log(ForestSize) , for example a forest of size 1024*1024, is
executed 2*(log(1024*1024)) which equal to 2048. The log is to the base 2. We recognize
that for large size problems the execution time is very small compared to the sequential
one.

Furthermore, for more exact comparison, we had the following table in figure 3.18 which
gives the exact execution time in seconds, and the speed up. We observe that the time
consummation for small sized forest is more in parallel version than large sized problem,
and this is normally true, due to the transfer of this small data between device and host.
However our interest is the large sized forest and we are very excited to found that in these
forests we can get a very big speed up. Thus, very small execution time compared to
sequential verison.

22

Figure 3.11: Randomly generated fire

Figure 3.12: 3 steps of transiton for middle region

23

Figure 3.13: After fire spread

24

Figure 3.14: Fire spread in Brest city trees areas

Figure 3.15: Fire spread after some steps

25

Figure 3.16: After fire stops

0

200

400

600

800

1000

1200

1400

Sequential (seconds)

Parallel(seconds)

Figure 3.17: Sequential vs Parallel forest Fire

 Parallel(seconds) Sequential (seconds) Speed Up

16*16 3.729389 1.67264 0.44850242
32*32 3.037199 1.816259 0.59800461
64*64 6.456442 1.934578 0.29963531
128*128 8.185488 2.301446 0.28116173
256*256 7.797166 2.929686 0.37573729
512*512 8.527426 9.262503 1.08620151
1024*1024 25.578263 69.278088 2.70847508
2048*2048 43.257623 1281.87583 29.6335244

Figure 3.18: Parallel Model Speedup

26

Chapter 4

Forest Fire Pipeline Version

The latency time in the parallel version is the sum of the time of execution of sending data
to GPU, exciting the kernel and returning the result back. So to enhance this time we can
use a pipeline approach that will be explained later. But to achieve this approach we need
firstly to send the forest part by part to be processed. So the first part of this chapter will
be concerned with slicing the image and the second part will apply the pipeline to these
slices.

4.1 Sliced Forest Fire Model

In the previous parallel forest fire application, a forest state is sent fully to the GPU, apply
the transition rule on the kernel and send the result back to host. These steps are performed
for a number of times specified by the variable steps. However to enhance the performance
and deal with very large problems, we need to send the forest state to the GPU part by part
or slice by slice. For example a forest of size 1024 * 1024 (more than one million) cell can
be sent to the GPU in eight parts of size 1024 * 128 or we can even send it in 1024 part,
where each part o 1024*1. Figure 4.1 show a forest of size 32*32 and it is divided into 4
slices, where each slice is sent to the GPU to be processed separately. We need to remark
that the width is always the same and the partitioning depends on the height.

4.1.1 Difficulties in the sliced approach

• Slice offset
The full forest state is stored on the host, and to send the forest part by part we need
to hold the starting offset of each part from the original forest state. This can be
achieved by extending the image struct used in the previous forest model as shown
in listing 4.1

27

Figure 4.1: Forest 32*32 divided into slices

Listing 4.1: struct image

1struct image
2{
3int width; //to hold the number of rows of the grid
4int height; //to hold the number of columns of the grid
5int *gridCellState;
6int offset; //the offest is used while sending an image part

by part
7};

• Identification of the number of slices
The number of slices is specified previously in the program, but we need to adapt it
according to the forest size. We can clarify this point by the following example.
Suppose the number of slices is 4 and the height is 32, then the four slices can
represent the whole forest state regardless of its width. However there are some
forest sizes where the height cannot be divided by the slice numbers, suppose that
the number of slices is 10 and the height is 38, then dividing 38 by 10 will give us 3
and the remainder will not be used, thus we will have eight rows of no use. And the
appropriate value for the slice number is 13. In the code our starting number of slice
is stored in a define directive named SLICE, this value is used to get each part height
by dividing the height of image by it. The size of a slice is stored in a variable named
part which is equal to the width of the image multiplied the slice height found by
dividing the height of image by the SLICE. We need to note that, in the division we
only take the quotient. For the rest of elements that are not included by the number
of slices, a local variable named slice num is adapted to the appropriate number of
slices required as shown in the pseudo code below

part = forest_width * foor(forest_height / slice)
slice_num=SLICE;

while (slice_num * part) < (forest_height*forest_width) do
slice_num = slice_num + 1;

end while

28

• Neighbors
As we know each cell updates its state depending on the state of its neighbors, there-
fore we need to send the north and south neighbors, i.e. one more row from top of
slice and one more row from bottom of slice. Thus the size of a slice will be more by
two widths. However we have several scenarios that will be explained in the function
toGPU. Figure 4-B shows how the second slice of the example shown previously in
figure 4.2 is sent to the GPU with north and south neighbors shown in blue

Figure 4.2: Slice of forest

4.1.2 Coding

As explained previously to process data on GPU, we need to send data to GPU, execute the
kernel and finally send the result back to host. Thus we defined three functions to perform
this tree tasks.

• toGPU

• processOnGPU

• fromGPU

We are going to illustrate each function on details.

4.1.2.1 toGPU()

This function is used to send a slice of the forest to the device. It has two parameters where
both are pointers of type struct image. The first pointer tin is a pointer to the whole forest
on the host whereas the second pointer tout is pointer to a part of the forest on the GPU. We
have to note carefully that the memory on the GPU has been already allocated previously
to hold one slice with two neighbor rows. The code starts by declaring some variables and
then calculating the size of a part as explained previously, and then it calculates the size
of a part in addition to the neighbors. After that it adapts the slice number as explained
previously. A part of the code is shown in listing 4.2.

Listing 4.2: Slice size

1part = tin->width * (tin->height/SLICE);
2
3//part with neighbors hold a part with north and south neighbors
4//add two rows, one on top for north neighbors
5//and one on bottom for south neighbors

29

6part_with_neighbors=part + (2*tin->width);
7
8//Check if the image can be fully represented by the number of slice

seleced,
9slice_num =SLICE;
10while ((slice_num * part) < (tin->height * tin->width))
11slice_num++;

Now to copy the data from the host to GPU, we need to use cudaMemcopy, but we have
different scenario.

• Copying the first slice

• Copying the second slice to before the last slice

• Copying the last slice

Copying the first slice
Firstly we need to copy the north neighbors of the first slice which is the last row in the
image as shown in listing 4.3. This last row starting index can be found as shown in line 2.
Then in line 4 we calculate the size of bytes for this last row. After that we begin to copy
this last row to the memory pointed by the second pointer for a number of bytes found by
size north. Figure 4.3 illustrate the transfer of this north neighbor.

Listing 4.3: First slice transfer to GPU

1//North row indexing begin at the leftmost elements of last row
2int north_row = (tin->width*(tin->height -1));
3//size of north neighbors
4size_t size_north = tin->width * sizeof(int);
5//copy to gpu, firstly the north neighbor
6cudaMemcpy(tout ->gridCellState ,tin->gridCellState+north_row ,size_north ,

cudaMemcpyHostToDevice);
7//copy the the first part from begining to size of one part plus size of a

width
8size_t remaing_part = (part + (tin->width))*sizeof(int);
9cudaMemcpy(tout ->gridCellState+(tin->width),tin->gridCellState ,remaing_part

,cudaMemcpyHostToDevice);

After that we begin to transfer the first slice information, the copy (line 9) starts from the
first position of the forest until the size of one part added by one row for the south neighbor
as shown in figure 4.4. We have to notice that the information is stored contiguously after
the north row copied previously.

Copying the second slice to before the last slice

To copy the slices from the second one to the slice before the last is straight forward. The
reason for that is the existence of the north and south neighbor directly before and after the
slice respectively. Thus we begin the copy from the position of one row before the slice and
the copy stops when we arrive to the size of a slice and two width size, hence it includes
the south neighbor too. The code is shown in listing 4.4 below and figure 4.5 to illustrate
the idea.

Listing 4.4: Copy slices between first and last slice

1//copy a part of the image including one row before and one row after for
NORTH and SOUTH neighbour respectively

2size_t part_size = part_with_neighbors * sizeof(int);
3cudaMemcpy(tout ->gridCellState ,tin->gridCellState+(tin->offset - tin->width

), part_size ,cudaMemcpyHostToDevice);

30

Figure 4.3: Copy north neighbors of first slice

Figure 4.4: Copy first slice with south neighbor

31

Figure 4.5: Copy slices between first and last slice

Copying the last slice

In copying the last slice, we have to to take care of the number of rows in this slice. This
is obtained in last part integer by subtracting the size of the image from the multiplication
of the part size by the number of slices. Furthermore, we need to add one row for the north
neighbor. For the south neighbor, it will be the first row of the forest. One of the important
points here, if the size of the last slice with its neighbors does not fulfill the size of a part to
be send to the GPU. This will produce false results, thus to process this problem, we used
the variable part remaining, which obtains the number of elements to be copied from the
beginning of the image to fill the memory. Only the top row will be used while processing
whereas the rest data will be discarded. The code below shows how we first copy the
last slice information with its north neighbor and then copying the south neighbor with or
without more rows to fill all the memory.

Listing 4.5: Copying the last slice

1last_part = (tin->width *tin->height) - (part*(slice_num -1)) + tin->width;
2//The remaining part to be used from top
3part_remaining = part_with_neighbors -last_part;
4
5//Copy the last part , with one row before that represet the north neighbor
6size_t last_part_size = last_part * sizeof(int);
7cudaMemcpy(tout ->gridCellState ,tin->gridCellState+(tin->offset - tin->width

),last_part_size ,cudaMemcpyHostToDevice);
8//copy the remaing part
9size_t part_remaining_size = part_remaining * sizeof(int);
10cudaMemcpy(tout ->gridCellState+ last_part ,tin->gridCellState ,

part_remaining_size ,cudaMemcpyHostToDevice);

32

4.1.2.2 processOnGPU()

This function is used to invoke the kernel and is similar to the kernel explained previously
with a small difference. In the previous version the number of blocks is used to occupy a
full forest but in this version the number of blocks is used to occupy a part or a slice of the
forest as given in listing 4.6

Listing 4.6: processOnGPU

1//process the data on the GPU
2void processOnGPU(struct image *tin,struct image *tout)
3{
4//The number of blocks within a gird
5int nBlocks = (tin->width*(tin->height/SLICE))/BLSIZE+ ((tin->width

*(tin->height/SLICE))%BLSIZE ==0?0:1);
6transitionFunc <<<nBlocks ,BLSIZE >>>(tin->gridCellState , tout ->

gridCellState , tin->width , tin->height/SLICE);
7}

This function is used to call the kernel. The kernel here also differs from the previous
version. The difference is that in the previous version we start processing from the first
element in the memory, but in this version we need to begin the process from the second
row. The number of threads executed is equal to size of a part without the neighbor. Thus
to make the first thread works on the first element of the slice shown in figure 4.6, we need
to add to the thread id the width of a row in order to access the appropriate position of the
element. Therefore we can generalize it and add the width to all thread index.

Figure 4.6: First cell in the slice

As shown in the figure above the position of the first element is (i+width) and to obtain
the north neighbor we need to subtract the width from i+width which in turns is equal to
“I” the thread id. To get the south neighbor we add to (i+width) a width, thus the south =
(i+width+width). It is shown in the listing ?? below

Listing 4.7: struct image

1i= blockIdx.x * blockDim.x + threadIdx.x;
2.
3//and the Norht neighbour will be i+width-width = i
4north= i;
5//south neighbour
6south= i+width+width;
7.

The rest of the code is similar to the previous one but we replace the thread id with thread
id + width. The whole kernel code is available in appendix C.

33

4.1.2.3 fromGPU()

When we send the result back from the device to the host, we need only to send the slice
information without its neighbor. After calculating the size of the part and adapting the
number of slices, we begin the transfer. We have two cases, the first case for all the slices
except the last one and the other case for the last slice. For the first case we copy the whole
memory allocated on the GPU for that part towards the host as shown in the code below, but
we need to specify to which part of the original forest this information belongs. This can
be achieved by using the offset, which holds the position of the part in the forest.

Listing 4.8: Copy result for slices before the last

1size_t size_image = tin->width*(tin->height/SLICE) *sizeof(int);
2cudaMemcpy(tout ->gridCellState+tout ->offset ,tin->gridCellState ,size_image ,

cudaMemcpyDeviceToHost);

To copy the last part, we first calculate the size of last part and then copy just that part
towards the host, discarding the rest as shown in the following code.

Listing 4.9: Copy result of last slice

1last_part = (tin->width *tin->height) - (part*(slice_num -1));
2size_t size_image = last_part *sizeof(int);
3cudaMemcpy(tout ->gridCellState+tout ->offset ,tin->gridCellState ,size_image ,

cudaMemcpyDeviceToHost);

4.1.2.4 All together

In order to process a full forest at time t, we need to send the data towards the GPU, execute
the kernel and receive the result back for each slice, thus we need a number of iteration
equal to the number of slices to process one image. After that we use this result for time
t+1 and this process continues until the number of steps. In this version we recognize that
for each part, the time required for one part cycle is
Time = Time_toGPU + Time_ kernel + Time_fromGPU

But we can achieve better time consummation by using the pipeline approach, which can
produce a result of time equal to
Time = Max(Time_toGPU , Time_ kernel , Time_fromGPU)

This is less time compared to the normal version. We will make use of the thread libraries
available in c language to achieve this objective.

4.2 Pipeline Version

In the pipeline structure, we will use the simultaneous multithreading feature of inter i7.
For each of the tasks toGPU(), processOnGPU() and fromGPU() we will use a separate
thread. Thus on total we need 3 threads that will be executed on parallel. In this pipeline
architecture the output from the first thread will be input for the second thread and the
output from the second thread is the input for the third thread and the output from the third
thread is the final result. The data between all the threads are of the same size so we will
define a struct that will represent the input and output data for each thread and declare an
array of it of size three, where each element of the array is used by a thread. The code is
shown in listing 4.10

34

Listing 4.10: Data for threads

1//data for each thread
2struct data_thread {
3int threadId;
4struct image *dataIn , *dataOut;
5};
6
7struct data_thread data[THREADS];

The first thread T1 will be responsible for sending data to the GPU, thus its pointer to
dataIn− >greatergridCellState is allocated on the host whereas the dataOut− > gridCell-
State on the GPU. As explained previously the image will be sent part by part towards
the GPU so the allocated space for dataIn–>gridCellState is for the whole forest but the
dataOut–>gridCellState allocated memory is of a size of a part with its neighbors. The
initialization of all threads will be done through init data thread() function, but the input
for thread 1 is previously allocated during the random generation or reading a BMP image.
So what is remaining is to allocate memory for the gridCellState on the GPU as shown in
listing 4.11.

Listing 4.11: Allocation for thread 1 on device

1err = cudaMalloc(&dt->dataOut ->gridCellState ,size_image_part);
2if(err)return true;
3break;

The second thread T2 will be responsible for the function processOnGPU() which in turns
call the kernel. Thus the allocation will be on the GPU memory for the gridCellState.
The dataIn is the data arrived from the GPU and this is the result that will be sent to
the next thread. The function init data thread() will also allocate the memory for the
dataIn–>gridCellState with a size of a part on the GPU and also will allocate the mem-
ory for dataOut–>gridCellState with a size of a slice without neighbors. Then this allo-
cated memory will be initialized to zero as shown in the code below. The purpose of this
initialization will be explained later.

Listing 4.12: Allocation and initialization for thread 2

1err = cudaMalloc (&dt->dataIn ->gridCellState ,size_image_part);
2err |= cudaMalloc(&dt->dataOut ->gridCellState , part * sizeof(int))

;
3if(!err){
4//Initialization
5SetZero <<<nBlocks1 ,BLSIZE >>>(dt->dataIn ->gridCellState ,dt->dataIn ->

width , (dt->dataIn ->height/SLICE + 2));
6SetZero <<<nBlocks ,BLSIZE >>>(dt->dataOut ->gridCellState ,dt->dataIn ->

width , dt->dataIn ->height/SLICE);
7}

The third thread T3 is used to transfer the data form GPU to host. The gridCellState is
allocated on the GPU for the input and allocated on the host for the output. The dataIn is
the data received from thread 2 and the dataOut is the final result. As usual the function
init data thread() will allocate the memory for the dataIn–>gridCellState with a size of a
slice without neighbors and also allocate the memory to hold the last gridCell result on the
host with size of a full forest. After that this allocated memory will also be initialized to
zero. The full code is available in apprendix C.

35

4.2.1 Functionality of the threads

After the threads have been declared and initialized, we need to create and execute these
threads as shown in listing 4.13. The functionality of the threads is assigned in the function
called threadStep(). The data related to each thread is passed as the last argument in the
function pthread create().

Listing 4.13: Creation and execution of threads

1//To create and execute threads
2for (i=0; i<THREADS;i++){
3pthread_create(&threads[i],NULL ,threadStep ,(void *)&(data[i]));
4}

The function threadStep() launches the appropriate function depending on a number, the
thread id. The code for this function is shown listing 4.14.

Listing 4.14: threadStep function

1void * threadStep(void * args)
2{
3int id;
4struct data_thread *sdata;
5sdata = (struct data_thread *) args;
6id = sdata ->threadId;
7switch (id) {
8case T1:
9//Thread 1 is responsible to send the data from

Host to Device GPU
10toGPU(sdata ->dataIn ,sdata ->dataOut);
11break;
12case T2:
13//Thread 2 execute the kernel
14processOnGPU(sdata ->dataIn , sdata ->dataOut);
15break;
16
17case T3:
18//Thread 3 send the data from the Device to Host
19fromGPU(sdata ->dataIn , sdata ->dataOut);
20break;
21}
22return 0;
23}

You can refer to the appendix to other parts of thread related code. So these threads works
concurrently, with periodic barrier synchronization. In the first turn, all the threads will be
working on the same time and the only useful result is the result of toGPU(). The result of
processOnGPU() and fromGPU() will be of no use in the first turn. An important question
arises, how to transfer and share scurely the data between the threads?

It can be done by using swapping function called dataMove() as shown in listing 4.15. And
this is the reason for why we initialized the data to zero in the thread initialization phase as
we will need to execute some threads without useful results.

Listing 4.15: Exchange data between threads

1void dataMove()
2{
3int *tmp;
4//Exchange the data between the threads.
5//The input of the T2 is the output from T1
6tmp = data[0].dataOut ->gridCellState;
7data[0].dataOut ->gridCellState = data[1].dataIn ->gridCellState;

36

8data[1].dataIn ->gridCellState = tmp;
9
10//The input of the T3 is the output from T2
11tmp = data[1].dataOut ->gridCellState;
12data[1].dataOut ->gridCellState = data[2].dataIn ->gridCellState;
13data[2].dataIn ->gridCellState = tmp;
14}

The next observation is that again the second turn the result of from kernel will be of no
use. After that from the third turn all the results are useful because the third will be having
input of first thread before two turns and the second thread will have input of the first thread
before on turn. Thus in general we can conclude, to obtain an output for a particular input
in thread 1, we need two more cycles to propagate the data from first thread until the last
thread. Also this is applied at the end of the pipeline where we have to have two more
turns to have the final result. This is shown in figure 4.7 where the threads marked in *
are executed without any useful need. The figure represents five slices of an image to be
processed on the GPU and the result sends back to host.

Figure 4.7: Pipelined thread

After we receive the final result of the last slice we use the full image result as input in the
next iteration for the forest and the operation is repeated as explained previously a number
of times equal to the value specified in the variable steps. The code is available in the
appendix with an output similar to the simple parallel version.

4.2.2 Execution Time

Figure 4.8 illustrates the execution time for the parallel version compared with the pipelined
version, where the number of sliced is set to 30. The comparison with the parallel version,
shows that pipelining consumes more time. This is normally true, due to some reasons.
Firstly we test the pipeline approach with small data compared to the GPU memory of
4GB. Also the synchronization time for the multithreading has an excessive overhead cost
when used with these small data. Conceptually, we can expect to have a smaller execution
time and better result if we deal with targeted larger data space.

37

0

20

40

60

80

100

120

140

32*32 64*64 128*128 256*256 512*512 1024*1024 2048*2048

Pipeline Parallel

Parallel

Figure 4.8: Parallel vs Pipeline Parallel

38

Chapter 5

Conclusion

With environmental modeling we are able to understand many real life features and phe-
nomena. The phenomenon that is under study is brought into a representation that can be
simulated. One of these modeling techniques is the Cellular automata. Due to its spatial
and temporal structure and its change of state we can implement many diffusion problems,
e.g. the forest fire spread. One of the important problems that face the modelers is the
execution time, and our main objective was to minimize it. Fortunately, due to the GPUs
available today we reached a much smaller execution time compared with the sequential
version. Moreover, dividing the environment into slices and sending it to the GPU, is a bet-
ter approach when used with pipeline structure and using large complex data that occupy
the whole capacity of the GPU, but this case is the focus of ongoing studies.

Future work

• The Forest Fire cellular automata can be extended to many real life problems such as
the fluvial dynamic in a landscape in terms of sediment [3], pest modeling for South
East Asia, locusts in Madagascar, Senegal, etc. . .

Moreover, deeper study on potential extension application field for celullar automata
can be performed with a study of the problems at limits of space and clock resolution.

• The cellular fire automata model can be improved to simulate fire in real environment
taking into account all the fire diffusion factors (wind, humidity, etc..). We can also
integrate it with some other synchronous simulations.

For example, we have the NetGen tool developed in the LabSTICC lab of Univer-
sity of Brest[12, 13, 14]. This tool allows to simulate distributed algorithms used
in wireless sensors algorithms. It is also connected with geographic map tool de-
veloped by Pierre Yves Lucas. On the map we have a number of wireless sensors
that are distributed over a wide area. There is the possibility to combine the network
modeling with the fire spread simulation in two one complex simulation schedul-
ing algorithms, where if a fire is generated in an area, then it is diffused using the
CA simulation and the work of the sensors to simulate the propagation of an alert
concerning the detection of the fire.

In this type of problems we have to take into account two types of time, time to dif-
fuse the fire the time to propagate the news of fire. We need to arrive to know whether
the massive parallelism has a positive impact in quick diffusion and broadcasting the

39

alert. Thus, among the points of interest to be studied, is the synchronization of time
between the two simulation models.

Another points is the spatial synchronization, how and where the sensors that detect
a fire in an area diffuse the news in priority to the area affected. Also, what are the
stability and the accuracy of the network system? Can it be able to withstand the
fire? To more clarify the idea, An image of a map of Brest city in France is shown
below, the first figure shows a fire simulation model where fire is diffused in the
forest area and the second figure shows a network sensors models where the sensors
are distributed in the same forest areas.

Thus the possibility of scheduling and combining the physical and observation sys-
tems is achievable.

Figure 5.1: Fire Simulation Brest City

Technically, during the internship I have acquired much knowledge about the subject of
environmental modeling, cellular automata and their application. I improved my program-
ming skill in C using CUDA. Also I gained some skills in using new libraries such as
OpenGL. Personally, I learned how to search for information, organize my ideas, write
well organized code, face problems and never surrender.

40

Figure 5.2: NetGen Simulation Brest City

41

List of Figures

1.1 Different Spatial Scales . 3
1.2 Different Temporal Scales . 3
1.3 Moore neighborhood . 4
1.4 Von-Neumann neighborhoods . 5
1.5 Circular neighborhoods example 1, left figure:Moore neighborhood - right

figure: Von-Neumann neighborhoods . 5
1.6 Circular neighborhoods example 2, left figure:Moore neighborhood - right

figure: Von-Neumann neighborhoods . 5

2.1 CUDA vs OpenCL . 8
2.2 Simple motherbard block diagram . 8
2.3 1D Thread hierarchy . 10
2.4 Increment array result . 10
2.5 Send data to device . 11
2.6 Execute the Kernel . 11
2.7 Send result from device to host . 12

3.1 Forest Fire at time t (S0) . 13
3.2 Forest Fire at time t+1 (S1) . 14
3.3 Fire Spread Evolution . 14
3.4 Forest Fire after several turns . 15
3.5 4*4 Forest grid . 16
3.6 Two Dimensional Arrays memory allocation 16
3.7 Forest Fire State (5*5) . 19
3.8 Normal Neighbor indexing . 20
3.9 North and west neighbor indexing for edge cell 20
3.10 South and east neighbor indexing for edge cell 21
3.11 Randomly generated fire . 23
3.12 3 steps of transiton for middle region . 23
3.13 After fire spread . 24
3.14 Fire spread in Brest city trees areas . 25
3.15 Fire spread after some steps . 25
3.16 After fire stops . 26
3.17 Sequential vs Parallel forest Fire . 26
3.18 Parallel Model Speedup . 26

4.1 Forest 32*32 divided into slices . 28
4.2 Slice of forest . 29
4.3 Copy north neighbors of first slice . 31
4.4 Copy first slice with south neighbor . 31
4.5 Copy slices between first and last slice . 32
4.6 First cell in the slice . 33
4.7 Pipelined thread . 37

42

4.8 Parallel vs Pipeline Parallel . 38

5.1 Fire Simulation Brest City . 40
5.2 NetGen Simulation Brest City . 41

43

Bibliography

[1] R.A. Letcher and A.J. Jakema. Types of Environmental Mode, Center for Resource and
Environmental Studies, The Australian National University, Australia.

[2] Francesco Berto and Jacopo Tagliabue. Cellular Automata, 26 Mars 2012,
http://plato.stanford.edu/entries/cellular-automata/.

[3] Florent Arrignon. Intégration des donnés environnementales de l‚observation à l'outil
de modélisation, 26 octobre 2012, Presentation by MAD-Environnement.

[4] OpenCl Website. http://www.khronos.org/opencl/

[5] Cellular Automata for Electric Power simulation project. 2004,
http://www.cs.sjsu.edu/faculty/rucker/capow/intro.html

[6] Michael J Young. Typical Uses of Cellular Automata, 12 November 2006
http://www.mjyonline.com/CellularAutomataUses.html

[7] Wolfram, S. Cellular Automata, Los Alamos Science, Volume 9, Fall 1983, 2-21.

[8] COmmon-pool Resources and Multi-Agent Simulations (CORMAS) CIRAD research
center, http://cormas.cirad.fr/.

[9] Wiki books website http://en.wikibooks.org/wiki/Cellular Automata/Applications of Cellular Automata.

[10] CUDA official website. NVIDIA CUDA Getting Started Guide for Linux ,
http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html.

[11] Wikipedia, http://en.wikipedia.org/wiki/Row-major order.

[12] Hritam Dutta, Thibault Failler, Nicolas Melot, Bernard Pottier and Serge Stinck-
wich. An execution flow for dynamic concurrent systems: simulation of WSN on a
Smalltalk/CUDA environment., DYROS, in SIMPAR10, Darmstadt, Novembre 2010.
ISBN 978-3-00-032-863

[13] Adnan Iqbal et Bernard Pottier, Meta-Simulation of Large WSN on Multi-core Com-
puters, DEVS 2010, SimSpring 2010, Apr 2010, Orlando (ACM/SCS),

[14] Bernard Pottier et Pierre-Yves Lucas, Concevoir, simuler, exécuter. Une chaı̂ne de
développement pour réseau de capteurs, UBIMOB 2012, CEPADUES, UPPA.

44

Appendix A

Machine Specification

This appendix decribe the machine we are working on with all the specification of the
GPU.

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 680"
CUDA Driver Version / Runtime Version 5.0 / 5.0
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 4096 MBytes (4294639616

bytes)
(8) Multiprocessors x (192) CUDA Cores/MP: 1536 CUDA Cores
GPU Clock rate: 1137 MHz (1.14 GHz)
Memory Clock rate: 3004 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 524288 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D

=(65536 ,65536), 3D=(4096,4096,4096)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D

=(16384 ,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 2147483647 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page -locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): No
Device PCI Bus ID / PCI location ID: 1 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

deviceQuery , CUDA Driver = CUDART , CUDA Driver Version = 5.0, CUDA Runtime
Version = 5.0, NumDevs = 1, Device0 = GeForce GTX 680

45

Appendix B

Forest Fire Model Version 1

This appendix contain all the code of the Forest Fire model that sends a full forest to the
GPU. The header file code .h is as follows

//FireSimulation
2//Two inputs ways, by reading an image or by randomly iniitialize an input

#include "FireSimulationV1.h"

struct image *img ,*img_d , *imgTemp ,*imgTemp_d;
7

size_t size_image1;

int fpsCount = 0; // FPS count for averaging
int fpsLimit = 2; // FPS limit for sampling

12int g_Index = 0;
unsigned int frameCount = 0;
StopWatchInterface *timer = NULL;

bool g_pause = false;
17bool g_singleStep = false;

bool g_gpu = true;

unsigned char* data ; // pixel Array of image

22int main (int argc , char **argv){

size_t size_struct;
img=(image *)malloc(sizeof(struct image));

27bool success;
int inputMethod;
success=false;

32printf("Fire Diffusion Simulator\n\n");
printf("\nPlease select input method");
printf("\n1. Random Generation");
printf("\n2. Read a forest image\n");
scanf("%d",&inputMethod);

37
if(inputMethod == 1)

success = randomGeneration(img);
else if(inputMethod == 2)

success = readBMP(img);
42else

return 0;

46

if(success){

47printf("We have four states , empty (0 - White), tree (1 - Green),
fire (2 -Red), ash (3 - Blue)\n");

//size of an struct
52size_struct = sizeof(struct image);

//allocate memory for the image struct variables
img_d= (image *)malloc(size_struct);
imgTemp = (image *)malloc(size_struct);

57imgTemp_d=(image *)malloc(size_struct);

printf("w: %d, h:%d\n",img->width ,img->height);
size_image1 = img->width *img->height * sizeof(int);

62//allocate memory for the new forest state at time t+1
imgTemp ->gridCellState=(int *)malloc(size_image1);

//allocation on the device
//allocate memory for the forest states at time t;

67cudaMalloc(&img_d ->gridCellState ,size_image1);
//allocate memory for the new forest state at time

t+1
cudaMalloc(&imgTemp_d ->gridCellState ,size_image1);

72sdkStartTimer(&timer);

glutInit(&argc , argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ALPHA |

GLUT_DEPTH);
glutInitWindowSize(img->width , img->height);

77glutCreateWindow("Fire automata");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glClearColor(0, 0, 0, 1.0);
generateFire(img,FIREDTREES);

82glutMainLoop();

sdkDeleteTimer(&timer);

//for(int i=0; i<10;i++)
87// run();

//printf("\nAll steps finished\n");
cudaFree(img_d ->gridCellState);
cudaFree(imgTemp_d ->gridCellState);

92free(imgTemp ->gridCellState);
free(img_d);
free(imgTemp);
free(imgTemp_d);
}

97free(img->gridCellState);
free(img);

return 0;
}

102
//Function to execute the simulation, called by display
void runSimulation()
{
int nBlocks = (img->width*img->height)/BLSIZE + ((img->width*img->height)

%BLSIZE ==0?0:1);
107//copy data from host to device

47

cudaMemcpy(img_d ->gridCellState ,img->gridCellState ,size_image1 ,
cudaMemcpyHostToDevice);

transitionFunc <<<nBlocks ,BLSIZE >>>(img_d ->gridCellState , imgTemp_d ->
gridCellState , img->width , img->height);
//copy data back from device to host
cudaMemcpy(imgTemp ->gridCellState ,imgTemp_d ->gridCellState ,

size_image1 ,cudaMemcpyDeviceToHost);
112//store the new state in grid

swapGrids(img->gridCellState , imgTemp ->gridCellState);
}

117
void display()
{

sdkStartTimer(&timer);
122glMatrixMode(GL_PROJECTION); /* specifies the current matrix */

glLoadIdentity(); /* Sets the currant matrix
to identity */

gluOrtho2D(0,img->width ,0,img->height); /* Sets the clipping
rectangle extends */

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
127

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_BLEND); //enable the blending
glBlendFunc(GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA);

132
glColor3f(1,1,1);
glPointSize (1);

glBegin(GL_POINTS);
137

for(int i=0;i<img->height;i++){
for(int j=0;j<img->width;j++){
int cell = img->gridCellState[i * img->width + j];
int idx = (((i*img->width)+(j)) * 3) ;

142if(cell == 0){
//if the cell is 0 than ground color white

//glColor3f(1.0f,1.0f,1.0f); // White
glColor3f(((float) data[idx + 2])/255.0, ((float) data[idx + 1]) /

255.0 , ((float) data[idx]) / 255.0);
//glColor3f(0.0f, 0.0f,0.0f);

147glVertex3f(j,i,0);
}

else if(cell == 1) {
//if the cell is 1 than tree color tree

152glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(j,i,0);

}
else if(cell == 2){

//if the cell is 2 than fire color red
157glColor3f(1.0f,0.0f,0.0f); // Red

glVertex3f(j,i,0);
}

else if(cell == 3) {
//if cell is 3 than qsh colored gray

162//glColor3f(0.6f,0.6f,0.6f); // Gray
//glColor3f(1.0f,1.0f,1.0f);
glColor3f(1.0f,1.0f,1.0f); // White

glVertex3f(j,i,0);
}

167}
}

48

glEnd();
glutSwapBuffers();
glutPostRedisplay();

172glFlush ();
if (!g_pause || g_singleStep)
{

if (g_gpu)
runSimulation();

177
g_singleStep = false;

}
sdkStopTimer(&timer);
computeFPS();

182}

void generateFire(struct image *img, int firedTreeCount)
{

187
//After the first step, a random selected cell is fired

srand(time(NULL));int random;
for(int i=0; i<firedTreeCount; i++){

random = rand()%((img->height * img->width) -1);
192img->gridCellState[random]=2;

}
}

//Function for transiton rule
197__global__ void transitionFunc(int *grid , int *bufferGrid , int width , int

height){
//check the cell's 4 neighbors
//Northj, south, east, west
int cellState;
int north , east , south , west;

202int i;
i= blockIdx.x * blockDim.x + threadIdx.x;
if(i<height*width){

//Calculating the new states
if (grid[i] == 0)

207cellState = 0;
else if (grid[i] == 1)
{

//The north neighbours of the first row are the one in the last
row, else the row above

212north= ((i-width)<0) ? (height*width) - width + i : i-width;
//south neighbour of the last row are the first row, esle the

row below
south= (i+width) >= (height*width) ? ((i+width)%(height*width))

: i+width;
//here we need to check if the east neighbour doesnot exceed the

right border, if so its neighbour
//is the leftmost element in he same row

217//to get in which row we are, we use (i+width)/width
east = ((i+1) >=(((i/width)*width)+width)) ? ((i)/width)*width:i

+1;
//west
west = (i-1) <((i/width)*width) ?((i/width)*width)+width -1 : i-1;

222
if (grid[north] == 2 || grid[south] == 2

|| grid[east] == 2 || grid[west]
== 2)

{
cellState = 2 ;

227}
else

49

{
cellState = 1 ;

}
232}

else if (grid[i] == 2) cellState = 3 ;
else cellState = 3;

//Store the new state of time t+1 in bufferGrid
237bufferGrid[i] = cellState;

}
}

//swap two grids
242void swapGrids(int *&grid , int *&bufferGrid){

int *temp;
temp = grid;
grid = bufferGrid;
bufferGrid= temp;

247}
/**Initialization on the GPU

***************************/
bool initializationOnGPU(struct image *img)
{

printf("Initializing ...\n");
252int size_image = (img->height * img->width) * sizeof(int);

int size_devstate = (img->height * img->width) * sizeof(
curandState);

curandState* devStates;
int * temp;
int err_devState = cudaMalloc (&devStates ,size_devstate);

257int err_temp = cudaMalloc(&temp ,size_image);
printf("err_devState: %dÂ \n",err_devState);

if(!err_devState && !err_temp){
//the number of threads within a block

int nBlocks = ((img->width*img->height)/BLSIZE)+ (((img->
width*img->height)%BLSIZE)==0?0:1);

262//generate the seeds
setup_kernel <<<nBlocks ,BLSIZE >>>(devStates , time(NULL),img

->width , img->height);
//Inialize the image grid
initializeArray <<<nBlocks ,BLSIZE >>>(devStates , temp ,PROB ,

img->width , img->height);
cudaMemcpy(img->gridCellState ,temp ,size_image ,

cudaMemcpyDeviceToHost);
267cudaFree(temp);

cudaFree(devStates);
printf("Initialization Successfully\n");
return true;

}
272else{

printf("Error memory Allocation");
return false;

}

277}
__global__ void setup_kernel (curandState * state , unsigned long seed ,int

width , int height)
{

int j = blockIdx.x * blockDim.x + threadIdx.x;
if(j< width* height)

282curand_init (seed , j, 0, &state[j]);
}

__global__ void initializeArray(curandState* globalState ,int *grid , float
prob , int width , int height)

{
287int j = blockIdx.x * blockDim.x + threadIdx.x;

50

int val;
if(j<height * width){

curandState localState = globalState[j];
float RANDOM = curand_uniform(&localState);

292globalState[j] = localState;
if(RANDOM <= prob) //Probatility to have tree is 0.58

val = 1;
else

val = 0;
297grid[j]=val;

}
}
/***Initialization on the CPU

**************************/

302void initializeArray(struct image *img){
//fill the array with random values, O inicate empty and 1 indiate

tree
int random=0;
srand(time(NULL));
for(int i=0;i<img->height;i++){

307for(int j=0;j<img->width;j++){
// The initial state of each cell of the spatial

grid is either set to #tree with
//a probability p or to #empty with a probability

1-p.
float val = (float)rand() / RAND_MAX;
if(val <= PROB) //Probatility to have tree is

0.58
312random = 1;

else
random = 0;

img->gridCellState[i*img->width + j]=random;

317}
}

}

/**Input Methods

**/
322//Function that ask the user to enter the path of image and initialize it

on
//based on a reference number and threshold value,
//the reference number is used to detect the green color in the image, i.e

to detect the trees
//it then stores the state of the image in img
bool readBMP(struct image *img)

327{
char fileName [100];
printf("\nPlease enter file name .bmp:\n");
scanf("%s",fileName);

332FILE* file = fopen(fileName , "rb");
if(file==0)
{

printf("\nCould not open the file");
return false;

337}
else
{
unsigned char info[54];
int distance;

342int state=0;
int width , height;
fread(info , sizeof(unsigned char), 54, file); // read the 54-byte

header
// extract image height and width from header

51

width = *(int*)&info[18];
347height = *(int*)&info[22];

printf("\nwidth:%d",width);
printf("\nheight:%d",height);

352//store the width
img->width= width;
img->height=height;
//allocation on the host
//allocate memory for the forest states at time t;

357img->gridCellState = (int *) malloc ((img->width * img->height) *
sizeof(int));

//3 bytes per pixel
int size = 3 * img->width * img->height;
//unsigned char* data = (unsigned char*)malloc(size); // allocate 3

bytes per pixel
362data = (unsigned char*)malloc(size);

fread(data , sizeof(unsigned char), size , file); // read the rest of
the data at once

fclose(file);

//detect color based on ecidian distance;
367

for(int i =0 ; i<size; i+=3){//height
//Red indeed at i+2. Green indeed at i+1, Blue indeed at i,

the order in the file is B, G , Red
distance = sqrt(pow((data[i+2] - RED_REF),2) + pow((data[i

+1] - GREEN_REF),2) + pow((data [i] - BLUE_REF),2));
state=0;

372if(distance < THRESHOLD)
{

if (((double)rand() / (double)RAND_MAX) >
0.3)

state=1;
}

377else state=0;
//i is 3 times more
img->gridCellState[(i/3)]=state;

}
return true;

382}
}

//Random generation of a forest
bool randomGeneration(struct image *img)

387{
int width , height;
bool succ;
printf("\nEnter width: ");
scanf("%d",&width);

392printf("\nEnter height: ");
scanf("%d",&height);
img->width= width;
img->height=height;
//allocation on the host

397//allocate memory for the forest states at time t;
img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof(int));
succ =true;
initializeArray(img);
//succ = initializationOnGPU(img);

402if(succ)
return true;

else
return false;

52

}
407

/**OpenGL
Display Helper **********************/

void computeFPS()
{

412frameCount++;
fpsCount++;

if (fpsCount == fpsLimit) {
char fps[256];

417

float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
sprintf(fps, "Forest Fire Automate Simulation , By AHMED Ahmed ,

Supervised by Prof.Bernard Pottier: %3.1f fps %d generations",
ifps , frameCount);

422glutSetWindowTitle(fps);
fpsCount = 0;
//if (g_CheckRender && !g_CheckRender->IsQAReadback()) fpsLimit = (

int)MAX(ifps, 1.f);

//checkCudaErrors(cutResetTimer(timer));
427sdkResetTimer(&timer);

//AutoQATest();
}

}

432

void keyboard(unsigned char key, int x, int y)
{

437if (key==' ')
{

g_pause = !g_pause;
}

442if (key=='s')
{

g_pause = true;
g_singleStep = true;

}
447display();

}

/**Printing
helpers ********************************/

452//print the data of gridCellState in image
void dumpArray(struct image *img){

printf("\n**\n");
//print contents of the array
for(int i=0;i<img->height;i++){

457for(int j=0;j<img->width;j++){
printf("%d ",img->gridCellState[i * img->width + j

]);
}
printf("\n");

}
462}

////print the data of gridCellState in image, with qa color identifying
each state

void dumpArrayColor(struct image *img){

53

printf("\n**\n");
467//print contents of the array

int *grid = img->gridCellState;
int width = img->width;
for(int i=0;i<img->height;i++){

for(int j=0;j<img->width;j++){
472

if(grid[i * width + j] == 0) printf("\e[1;0m%d ",
grid[i * width + j]);

else if(grid[i * width + j] == 1) printf("\e[1;32m%
d ",grid[i * width + j]);

else if(grid[i * width + j] == 2) printf("\e[1;31m%
d ",grid[i * width + j]);

else if(grid[i * width + j] == 3) printf("\e[1;34m%
d ",grid[i * width + j]);

477}
printf("\e[1;0m\n");

}
}

482/***Delay helper

***********************************/
//Delay between the outputs
void wait (int seconds){

clock_t endwait;
endwait = clock () + seconds * CLOCKS_PER_SEC ;

487while (clock() < endwait) {}
}

The principle code .cu is given is the following part.
1//FireSimulation

//Two inputs ways, by reading an image or by randomly iniitialize an input
#include "FireSimulationV1.h"

6struct image *img ,*img_d , *imgTemp ,*imgTemp_d;

size_t size_image1;

int fpsCount = 0; // FPS count for averaging
11int fpsLimit = 2; // FPS limit for sampling

int g_Index = 0;
unsigned int frameCount = 0;
StopWatchInterface *timer = NULL;

16bool g_pause = false;
bool g_singleStep = false;
bool g_gpu = true;

unsigned char* data ; // pixel Array of image
21

int main (int argc , char **argv){

size_t size_struct;
26img=(image *)malloc(sizeof(struct image));

bool success;
int inputMethod;
success=false;

31
printf("Fire Diffusion Simulator\n\n");

printf("\nPlease select input method");
printf("\n1. Random Generation");
printf("\n2. Read a forest image\n");

36scanf("%d",&inputMethod);

54

if(inputMethod == 1)
success = randomGeneration(img);

else if(inputMethod == 2)
41success = readBMP(img);

else
return 0;

if(success){
46

printf("We have four states , empty (0 - White), tree (1 - Green),
fire (2 -Red), ash (3 - Blue)\n");

51//size of an struct
size_struct = sizeof(struct image);

//allocate memory for the image struct variables
img_d= (image *)malloc(size_struct);

56imgTemp = (image *)malloc(size_struct);
imgTemp_d=(image *)malloc(size_struct);

printf("w: %d, h:%d\n",img->width ,img->height);
size_image1 = img->width *img->height * sizeof(int);

61
//allocate memory for the new forest state at time t+1

imgTemp ->gridCellState=(int *)malloc(size_image1);

//allocation on the device
66//allocate memory for the forest states at time t;

cudaMalloc(&img_d ->gridCellState ,size_image1);
//allocate memory for the new forest state at time

t+1
cudaMalloc(&imgTemp_d ->gridCellState ,size_image1);

71
sdkStartTimer(&timer);

glutInit(&argc , argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ALPHA |

GLUT_DEPTH);
76glutInitWindowSize(img->width , img->height);

glutCreateWindow("Fire automata");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glClearColor(0, 0, 0, 1.0);

81generateFire(img,FIREDTREES);
glutMainLoop();

sdkDeleteTimer(&timer);

86//for(int i=0; i<10;i++)
// run();

//printf("\nAll steps finished\n");
cudaFree(img_d ->gridCellState);

91cudaFree(imgTemp_d ->gridCellState);
free(imgTemp ->gridCellState);
free(img_d);
free(imgTemp);
free(imgTemp_d);

96}
free(img->gridCellState);
free(img);

return 0;
}

101

55

//Function to execute the simulation, called by display
void runSimulation()
{

106int nBlocks = (img->width*img->height)/BLSIZE + ((img->width*img->height)
%BLSIZE ==0?0:1);
//copy data from host to device
cudaMemcpy(img_d ->gridCellState ,img->gridCellState ,size_image1 ,

cudaMemcpyHostToDevice);
transitionFunc <<<nBlocks ,BLSIZE >>>(img_d ->gridCellState , imgTemp_d ->

gridCellState , img->width , img->height);
//copy data back from device to host

111cudaMemcpy(imgTemp ->gridCellState ,imgTemp_d ->gridCellState ,
size_image1 ,cudaMemcpyDeviceToHost);

//store the new state in grid
swapGrids(img->gridCellState , imgTemp ->gridCellState);

}

116

void display()
{

121sdkStartTimer(&timer);
glMatrixMode(GL_PROJECTION); /* specifies the current matrix */
glLoadIdentity(); /* Sets the currant matrix

to identity */
gluOrtho2D(0,img->width ,0,img->height); /* Sets the clipping

rectangle extends */

126glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_BLEND); //enable the blending

131glBlendFunc(GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA);

glColor3f(1,1,1);
glPointSize (1);

136glBegin(GL_POINTS);

for(int i=0;i<img->height;i++){
for(int j=0;j<img->width;j++){
int cell = img->gridCellState[i * img->width + j];

141int idx = (((i*img->width)+(j)) * 3) ;
if(cell == 0){

//if the cell is 0 than ground color white
//glColor3f(1.0f,1.0f,1.0f); // White
glColor3f(((float) data[idx + 2])/255.0, ((float) data[idx + 1]) /

255.0 , ((float) data[idx]) / 255.0);
146//glColor3f(0.0f, 0.0f,0.0f);

glVertex3f(j,i,0);
}

else if(cell == 1) {
//if the cell is 1 than tree color tree

151
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(j,i,0);

}
else if(cell == 2){

156//if the cell is 2 than fire color red
glColor3f(1.0f,0.0f,0.0f); // Red

glVertex3f(j,i,0);
}

else if(cell == 3) {
161//if cell is 3 than qsh colored gray

56

//glColor3f(0.6f,0.6f,0.6f); // Gray
//glColor3f(1.0f,1.0f,1.0f);
glColor3f(1.0f,1.0f,1.0f); // White

glVertex3f(j,i,0);
166}

}
}
glEnd();
glutSwapBuffers();

171glutPostRedisplay();
glFlush ();
if (!g_pause || g_singleStep)
{

if (g_gpu)
176runSimulation();

g_singleStep = false;
}
sdkStopTimer(&timer);

181computeFPS();
}

void generateFire(struct image *img, int firedTreeCount)
186{

//After the first step, a random selected cell is fired
srand(time(NULL));int random;
for(int i=0; i<firedTreeCount; i++){

191random = rand()%((img->height * img->width) -1);
img->gridCellState[random]=2;

}
}

196//Function for transiton rule
__global__ void transitionFunc(int *grid , int *bufferGrid , int width , int

height){
//check the cell's 4 neighbors
//Northj, south, east, west
int cellState;

201int north , east , south , west;
int i;
i= blockIdx.x * blockDim.x + threadIdx.x;
if(i<height*width){

//Calculating the new states
206if (grid[i] == 0)

cellState = 0;
else if (grid[i] == 1)
{

211//The north neighbours of the first row are the one in the last
row, else the row above

north= ((i-width)<0) ? (height*width) - width + i : i-width;
//south neighbour of the last row are the first row, esle the

row below
south= (i+width) >= (height*width) ? ((i+width)%(height*width))

: i+width;
//here we need to check if the east neighbour doesnot exceed the

right border, if so its neighbour
216//is the leftmost element in he same row

//to get in which row we are, we use (i+width)/width
east = ((i+1) >=(((i/width)*width)+width)) ? ((i)/width)*width:i

+1;
//west
west = (i-1) <((i/width)*width) ?((i/width)*width)+width -1 : i-1;

221

57

if (grid[north] == 2 || grid[south] == 2
|| grid[east] == 2 || grid[west]

== 2)
{

226cellState = 2 ;
}
else
{

cellState = 1 ;
231}

}
else if (grid[i] == 2) cellState = 3 ;
else cellState = 3;

236//Store the new state of time t+1 in bufferGrid
bufferGrid[i] = cellState;

}
}

241//swap two grids
void swapGrids(int *&grid , int *&bufferGrid){

int *temp;
temp = grid;
grid = bufferGrid;

246bufferGrid= temp;
}
/**Initialization on the GPU

***************************/
bool initializationOnGPU(struct image *img)
{

251printf("Initializing ...\n");
int size_image = (img->height * img->width) * sizeof(int);
int size_devstate = (img->height * img->width) * sizeof(

curandState);
curandState* devStates;
int * temp;

256int err_devState = cudaMalloc (&devStates ,size_devstate);
int err_temp = cudaMalloc(&temp ,size_image);

printf("err_devState: %dÂ \n",err_devState);
if(!err_devState && !err_temp){

//the number of threads within a block
261int nBlocks = ((img->width*img->height)/BLSIZE)+ (((img->

width*img->height)%BLSIZE)==0?0:1);
//generate the seeds
setup_kernel <<<nBlocks ,BLSIZE >>>(devStates , time(NULL),img

->width , img->height);
//Inialize the image grid
initializeArray <<<nBlocks ,BLSIZE >>>(devStates , temp ,PROB ,

img->width , img->height);
266cudaMemcpy(img->gridCellState ,temp ,size_image ,

cudaMemcpyDeviceToHost);
cudaFree(temp);
cudaFree(devStates);
printf("Initialization Successfully\n");
return true;

271}
else{

printf("Error memory Allocation");
return false;

}
276

}
__global__ void setup_kernel (curandState * state , unsigned long seed ,int

width , int height)
{

int j = blockIdx.x * blockDim.x + threadIdx.x;
281if(j< width* height)

58

curand_init (seed , j, 0, &state[j]);
}

__global__ void initializeArray(curandState* globalState ,int *grid , float
prob , int width , int height)

286{
int j = blockIdx.x * blockDim.x + threadIdx.x;
int val;
if(j<height * width){

curandState localState = globalState[j];
291float RANDOM = curand_uniform(&localState);

globalState[j] = localState;
if(RANDOM <= prob) //Probatility to have tree is 0.58

val = 1;
else

296val = 0;
grid[j]=val;

}
}
/***Initialization on the CPU

**************************/
301

void initializeArray(struct image *img){
//fill the array with random values, O inicate empty and 1 indiate

tree
int random=0;
srand(time(NULL));

306for(int i=0;i<img->height;i++){
for(int j=0;j<img->width;j++){

// The initial state of each cell of the spatial
grid is either set to #tree with

//a probability p or to #empty with a probability
1-p.

float val = (float)rand() / RAND_MAX;
311if(val <= PROB) //Probatility to have tree is

0.58
random = 1;

else
random = 0;

img->gridCellState[i*img->width + j]=random;
316

}
}

}

321/**Input Methods

**/
//Function that ask the user to enter the path of image and initialize it

on
//based on a reference number and threshold value,
//the reference number is used to detect the green color in the image, i.e

to detect the trees
//it then stores the state of the image in img

326bool readBMP(struct image *img)
{

char fileName [100];
printf("\nPlease enter file name .bmp:\n");
scanf("%s",fileName);

331
FILE* file = fopen(fileName , "rb");
if(file==0)
{

printf("\nCould not open the file");
336return false;

}
else
{

59

unsigned char info[54];
341int distance;

int state=0;
int width , height;
fread(info , sizeof(unsigned char), 54, file); // read the 54-byte

header
// extract image height and width from header

346width = *(int*)&info[18];
height = *(int*)&info[22];

printf("\nwidth:%d",width);
printf("\nheight:%d",height);

351
//store the width
img->width= width;
img->height=height;
//allocation on the host

356//allocate memory for the forest states at time t;
img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof(int));

//3 bytes per pixel
int size = 3 * img->width * img->height;

361//unsigned char* data = (unsigned char*)malloc(size); // allocate 3
bytes per pixel

data = (unsigned char*)malloc(size);
fread(data , sizeof(unsigned char), size , file); // read the rest of

the data at once
fclose(file);

366//detect color based on ecidian distance;

for(int i =0 ; i<size; i+=3){//height
//Red indeed at i+2. Green indeed at i+1, Blue indeed at i,

the order in the file is B, G , Red
distance = sqrt(pow((data[i+2] - RED_REF),2) + pow((data[i

+1] - GREEN_REF),2) + pow((data [i] - BLUE_REF),2));
371state=0;

if(distance < THRESHOLD)
{

if (((double)rand() / (double)RAND_MAX) >
0.3)

state=1;
376}

else state=0;
//i is 3 times more
img->gridCellState[(i/3)]=state;

}
381return true;

}
}

//Random generation of a forest
386bool randomGeneration(struct image *img)

{
int width , height;
bool succ;
printf("\nEnter width: ");

391scanf("%d",&width);
printf("\nEnter height: ");
scanf("%d",&height);
img->width= width;
img->height=height;

396//allocation on the host
//allocate memory for the forest states at time t;
img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof(int));

60

succ =true;
initializeArray(img);

401//succ = initializationOnGPU(img);
if(succ)

return true;
else

return false;
406}

/**OpenGL
Display Helper **********************/

void computeFPS()
411{

frameCount++;
fpsCount++;

if (fpsCount == fpsLimit) {
416char fps[256];

float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
sprintf(fps, "Forest Fire Automate Simulation , By AHMED Ahmed ,

Supervised by Prof.Bernard Pottier: %3.1f fps %d generations",
ifps , frameCount);

421
glutSetWindowTitle(fps);
fpsCount = 0;
//if (g_CheckRender && !g_CheckRender->IsQAReadback()) fpsLimit = (

int)MAX(ifps, 1.f);

426//checkCudaErrors(cutResetTimer(timer));
sdkResetTimer(&timer);
//AutoQATest();

}
}

431

void keyboard(unsigned char key, int x, int y)
{

436
if (key==' ')
{

g_pause = !g_pause;
}

441
if (key=='s')
{

g_pause = true;
g_singleStep = true;

446}
display();

}

451/**Printing
helpers ********************************/

//print the data of gridCellState in image
void dumpArray(struct image *img){

printf("\n**\n");
//print contents of the array

456for(int i=0;i<img->height;i++){
for(int j=0;j<img->width;j++){

printf("%d ",img->gridCellState[i * img->width + j
]);

}

61

printf("\n");
461}

}

////print the data of gridCellState in image, with qa color identifying
each state

void dumpArrayColor(struct image *img){
466printf("\n**\n");

//print contents of the array
int *grid = img->gridCellState;
int width = img->width;
for(int i=0;i<img->height;i++){

471for(int j=0;j<img->width;j++){

if(grid[i * width + j] == 0) printf("\e[1;0m%d ",
grid[i * width + j]);

else if(grid[i * width + j] == 1) printf("\e[1;32m%
d ",grid[i * width + j]);

else if(grid[i * width + j] == 2) printf("\e[1;31m%
d ",grid[i * width + j]);

476else if(grid[i * width + j] == 3) printf("\e[1;34m%
d ",grid[i * width + j]);

}
printf("\e[1;0m\n");

}
}

481
/***Delay helper

***********************************/
//Delay between the outputs
void wait (int seconds){

clock_t endwait;
486endwait = clock () + seconds * CLOCKS_PER_SEC ;

while (clock() < endwait) {}
}

62

Appendix C

Forest Fire Model Version 2

This appendix contain the second version of forest model, which sends the forest slice by
slice to the device and use pipeline approch. The header file code .h is as follows

1// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

6
#ifdef _WIN32
define WINDOWS_LEAN_AND_MEAN
define NOMINMAX
include <windows.h>

11#endif

// OpenGL Graphics includes
#include <GL/glew.h>
#if defined (__APPLE__) || defined(MACOSX)

16#include <GLUT/glut.h>
#else
#include <GL/freeglut.h>
#endif

21// includes, cuda
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>

// Utilities and timing functions
26#include <helper_functions.h> // includes cuda.h and cuda_runtime_api.h

#include <timer.h> // timing functions

// CUDA helper functions
#include <helper_cuda.h> // helper functions for CUDA error check

31#include <helper_cuda_gl.h> // helper functions for CUDA/GL interop

#include <time.h>
#include <cuda.h>

36#include <curand_kernel.h>

#include <sys/unistd.h>
#include <pthread.h>

41
#define FIREDTREES 4 //Numbers of trees to be fired randomly
#define PROB 0.58 //Probabilty for the nubmer of trees in the forest

generation

63

//The initial number of slice, i.e then umber of parts to which an image
height will be divded

46//it will be adaped according to the size of the image
#define SLICE 1024

//used for threads
#define THREADS 3

51#define T1 0
#define T2 1
#define T3 2

//The number of thread per block
56#define BLSIZE 1024

//Used for image color detection
//The tree reference color
#define RED_REF 65

61#define GREEN_REF 75
#define BLUE_REF 65
//The threshold used in detection
#define THRESHOLD 30

66struct image
{

int width; //to hold the number of rows of the grid
int height; //to hold the number of columns of the grid
int *gridCellState;

71int offset; //the offest is used while sending an image part by part
};

//data for each thread
76struct data_thread {

int threadId;
struct image *dataIn , *dataOut;

};

81struct data_thread data[THREADS];

//Input methods
//random generation and read an image

86bool randomGeneration(struct image *img);
bool readBMP(struct image *img);

//OpenGL funtion that calls the simulation function
91void display();

//Initialize a fires,called by randomGeneration
void initializeArray(struct image *img);

96//allocate and intialize the thread data
bool init_data_thread(struct data_thread *dt, int id);
//free the allocated memory space of data of the thread
void free_data(struct data_thread dt);
//thread calls

101void * threadStep(void * args);
//Exchange of data between threads
void dataMove();

//Send data from Host to Device
106void toGPU(struct image *tin,struct image *tout);

//Execute the kernel
void processOnGPU(struct image *tin,struct image *tout);
//send the data from Device to Host

64

void fromGPU(struct image *tin,struct image *tout);
111//Random generaion of fire

void generateFire(struct image *img, int firedTreeCount);

//Initialze to zero
__global__ void SetZero(int *tabi ,int w, int h);

116
//the transition function to be executed on the GPU, the new state is hold
//in bufferGrid depending on the vaues of the current state
//in grid
__global__ void transitionFunc(int *grid , int *bufferGrid ,int width ,int

height);
121

//copy the new state grid "bufferGrid" to the main grid "grid"
void swapGrids(int *&grid , int *&bufferGrid);

//print the grid without color
126void dumpArray(struct image *grid);

//print te grid colored
void dumpArrayColor(struct image *grid);
void dumpArrayColor(int *grid , int width ,int height);

131//Delay between the outputs
void wait (int seconds);

//functions used by openGl for the output
void computeFPS();

136void keyboard(unsigned char key, int x, int y);

The principle code .cu is given is the following part.
#include "FireSimulationV2.h"

3int slice_num; void * status;int part; pthread_t * threads;
void runSimulation();

int fpsCount = 0; // FPS count for averaging
8int fpsLimit = 2; // FPS limit for sampling

int g_Index = 0;
unsigned int frameCount = 0;
StopWatchInterface *timer = NULL;

13bool g_pause = false;
bool g_singleStep = false;
bool g_gpu = true;

18int main (int argc , char **argv){

int i,err;

size_t size_struct;
23

pthread_attr_t attr;
int inputMethod;

28printf("Fire Diffusion Simulator\n\n");
printf("\nPlease select input method");
printf("\n1. Random Generation");
printf("\n2. Read a forest image\n");
scanf("%d",&inputMethod);

33
size_struct = sizeof(struct image);

//allocation of memory to the image pointer that will hold the
initial

65

//image
38data[0].dataIn =(image *)malloc(size_struct);

if(inputMethod == 1)
randomGeneration(data[0].dataIn);

43else if(inputMethod == 2)
readBMP(data[0].dataIn);

else{
printf("Exting application");
return 0;

48}

printf("We have four states , empty (0 - White), tree (1 - Green),
fire (2 -Red), ash (3 - Blue)\n");

53
//size of each image slice, the image slice is the width * (height/

the number of slices possible),
part = (data[0].dataIn ->width* (data[0].dataIn ->height/SLICE));

58for(i=0; i<THREADS;i++){
//allocate memory for the image struct variables
//data[0] is already allocated before while reading image

or random forest generation
if(i!=0){

data[i].dataIn =(image *)malloc(size_struct);//img
on HOST that hold state at time t

63//store the width ang height values
data[i].dataIn ->width = data[0].dataIn ->width;
data[i].dataIn ->height = data[0].dataIn ->height;

}
data[i].dataOut = (image *)malloc(size_struct);

68//store the width ang height values
data[i].dataOut ->width = data[0].dataIn ->width;
data[i].dataOut ->height = data[0].dataIn ->height;

}

73
//allocation for the threads
threads=(pthread_t *)malloc(sizeof(pthread_t)*THREADS);

//initializes the thread attributes
78pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr , PTHREAD_CREATE_JOINABLE);

//initialize the threads and perfrom the required allocation
err =0;

83for (i=0; i<THREADS;i++)
err |= init_data_thread(& data[i], i);
//If there is no errors in memory allocation
if(!err){

//dumpArrayColor(data[0].dataIn);
88

if(SLICE <=data[0].dataIn ->height){
slice_num =SLICE;

93

//an image height is divided to SLICE, and send
part by part to the GPU.

//if the height is not fivisible bythe number of
slice, then we need to

66

//add more slices... for example if the slices
number is 10 and the input image

98//width and height are 16 and 13 respectively. Then
the number of slices to

//represent all the data is 13. Another example, if
the width=32 and height=38,

//then the number of slices requires is 10 + 3 =13.
while ((slice_num * part) < (data[0].dataIn ->

height * data[0].dataIn ->width))
slice_num++;

103

sdkStartTimer(&timer);

glutInit(&argc , argv);
108glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ALPHA |

GLUT_DEPTH);
glutInitWindowSize(data[0].dataIn ->width , data[0].dataIn ->

height);
glutCreateWindow("Fire automata");
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);

113glClearColor(0, 0, 0, 1.0);

generateFire(data[0].dataIn ,FIREDTREES);

glutMainLoop();
118

sdkDeleteTimer(&timer);

//runSimulation();

123
}
else{

printf("SLICE size is smaller than height\nExiting
application ...\n");

}
128

//Deallocation of memory
for (i=0; i<THREADS;i++)

free_data(data[i]);

133for(int i=0; i<THREADS;i++){
//allocate memory for the image struct variables
free(data[i].dataIn) ;
free(data[i].dataOut) ;

}
138free(threads);

//Explicitly destroys and cleans up all resources
associated with the current device.

//It will reset the device immediately.
cudaDeviceReset();

143
}
return 0;

}

148
//Function to execute the simulation, called by display
void runSimulation()
{
//As we have three threads, we need Two more steps to get the result

153//of last slice, so +2
int i,j;
for (j=0; j<slice_num+2; j++){

67

//to not exceed the size of the
array

//in the last two steps the
transfer to GPU

158//will be of no use
if(j<(slice_num+2))

data[0].dataIn ->offset =
part*j;

//if we arrived the third thread,
then it contains the offset of
the first thread,

if(j>=2){
163data[2].dataOut ->offset =

part*(j-2);
}

//To create and execute threads
for (i=0; i<THREADS;i++){

168pthread_create(&threads[i],
NULL ,threadStep ,(void
*)&(data[i]));

}
//if the threads doesnot finish, it

suspend the execution until
//the concerned thread finish
for (i=0; i<THREADS; i++){

173pthread_join(threads[i],&
status);

if(status);
//error

}

178//transfer the output of the first
thread to the input of second
thread,

//and transfer the output of the
second thread to the input of
first thread

dataMove();
}
//swap the states of the image, i.e. put

the input for the second loop
183//the new state generated as result by the

trransition function
swapGrids(data[0].dataIn ->gridCellState ,

data[2].dataOut ->gridCellState);
}

void display()
188{

sdkStartTimer(&timer);
glMatrixMode(GL_PROJECTION); /* specifies the current matrix */
glLoadIdentity(); /* Sets the currant matrix

to identity */
193gluOrtho2D(0,data[0].dataIn ->width ,0,data[0].dataIn ->height); /*

Sets the clipping rectangle extends */

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
198glLoadIdentity();

glEnable(GL_BLEND); //enable the blending
glBlendFunc(GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA);

glColor3f(1,1,1);
203glPointSize (1);

68

glBegin(GL_POINTS);

for(int i=0;i<data[0].dataIn ->height;i++){
208for(int j=0;j<data[0].dataIn ->width;j++){

int cell = data[0].dataIn ->gridCellState[i * data[0].
dataIn ->width + j];
if(cell == 0){

//if the cell is 0 than ground color white
glColor3f(1.0f,1.0f,1.0f); // White

213glVertex3f(j,i,0);
}

else if(cell == 1) {
//if the cell is 1 than tree color tree

glColor3f(0.0f,1.0f,0.0f); // Green
218glVertex3f(j,i,0);

}
else if(cell == 2){

//if the cell is 2 than fire color red
glColor3f(1.0f,0.0f,0.0f); // Red

223glVertex3f(j,i,0);
}

else if(cell == 3) {
//if cell is 3 than qsh colored gray
glColor3f(0.6f,0.6f,0.6f); // Gray

228glVertex3f(j,i,0);
}

}
}
glEnd();

233glutSwapBuffers();
glutPostRedisplay();
glFlush ();
if (!g_pause || g_singleStep)
{

238if (g_gpu)
runSimulation();

g_singleStep = false;
}

243sdkStopTimer(&timer);
computeFPS();

}

248//The functions that defines the functionality of each thread
void * threadStep(void * args)
{

int id;
struct data_thread *sdata;

253sdata = (struct data_thread *) args;
id = sdata ->threadId;
switch (id) {

case T1:
//Thread 1 is responsible to send the data from

Host to Device GPU
258toGPU(sdata ->dataIn ,sdata ->dataOut);

break;
case T2:

//Thread 2 execute the kernel
processOnGPU(sdata ->dataIn , sdata ->dataOut);

263break;

case T3:
//Thread 3 send the data from the Device to Host
fromGPU(sdata ->dataIn , sdata ->dataOut);

268break;

69

}
return 0;

}

273
//function to free the allocated memory
void free_data(struct data_thread dt)
{

int id;
278id = dt . threadId;

switch (id){
case T1 :

cudaFree(dt.dataOut ->gridCellState);
free(dt.dataIn ->gridCellState);

283break;
case T2 :

cudaFree(dt.dataIn ->gridCellState);
cudaFree(dt.dataOut ->gridCellState);
break;

288case T3 :
cudaFree(dt.dataIn ->gridCellState);
free(dt.dataOut ->gridCellState);
break;

}
293}

void dataMove()
{

298int *tmp;
//Exchange the data between the threads.
//The input of the T2 is the output from T1
tmp = data[0].dataOut ->gridCellState;
data[0].dataOut ->gridCellState = data[1].dataIn ->gridCellState;

303data[1].dataIn ->gridCellState = tmp;

//The input of the T3 is the output from T2
tmp = data[1].dataOut ->gridCellState;
data[1].dataOut ->gridCellState = data[2].dataIn ->gridCellState;

308data[2].dataIn ->gridCellState = tmp;
}

//Initilaize the thread data
//return true in case of allocation failure

313bool init_data_thread(struct data_thread *dt, int id)
{

int size_image , part ,partWithNeighbours ,size_image_part;
int i,err;
//size of a full image, used on host

318size_image = (dt->dataIn ->width*dt->dataIn ->height)*sizeof(int);
//part is the dimension size of a part
part = (dt->dataIn ->width*(dt->dataIn ->height/SLICE));
//Each slice has two more rows the directly upper and directly

before the slice
partWithNeighbours = part + (2 * dt->dataIn ->width);

323//size of memory required for a part
size_image_part = partWithNeighbours * sizeof(int);

err= 0;
dt->threadId = id;

328dt->dataIn ->offset =0;
dt->dataOut ->offset =0;

//number of blocks required for a part i.e. a slice without
neightbors

int nBlocks = (dt->dataIn ->width*(dt->dataIn ->height/SLICE))/BLSIZE
+ ((dt->dataIn ->width*(dt->dataIn ->height/SLICE))%BLSIZE

70

==0?0:1);
333//number of blocks reuqured for a part i.e. a slice with two rows

for north and south neighbors
int nBlocks1 = (dt->dataIn ->width*((dt->dataIn ->height/SLICE)+2))/BLSIZE+

((dt->dataIn ->width*((dt->dataIn ->height/SLICE)+2))%BLSIZE ==0?0:1);

switch (id){
case T1:

338//Allocate the memory required by thread 1 on the
Device,

//i.e. the memory on the GPU to which the data will
be send

err = cudaMalloc(&dt->dataOut ->gridCellState ,
size_image_part);

if(err)return true;
break;

343case T2 :
//allocate the memory required by thread 2 to

process the the data on the GPU
err = cudaMalloc (&dt->dataIn ->gridCellState ,

size_image_part);
err |= cudaMalloc(&dt->dataOut ->gridCellState ,

part * sizeof(int));
if(!err){

348//Initialization
SetZero <<<nBlocks1 ,BLSIZE >>>(dt->dataIn ->

gridCellState ,dt->dataIn ->width , (dt->
dataIn ->height/SLICE + 2));

SetZero <<<nBlocks ,BLSIZE >>>(dt->dataOut ->
gridCellState ,dt->dataIn ->width , dt->
dataIn ->height/SLICE);

}
else

353return true;
break;

case T3 :
err= cudaMalloc(&dt -> dataIn ->gridCellState ,part *

sizeof(int));
if(!err){

358SetZero <<<nBlocks ,BLSIZE >>>(dt->dataIn ->
gridCellState ,dt->dataIn ->width , dt->
dataIn ->height/SLICE);

dt->dataOut ->gridCellState= (int *)malloc(
size_image);

for(i=0;i<dt->dataOut ->width*dt->dataOut ->
height;i++)

dt->dataOut ->gridCellState[i]=0;
}

363else
return true;

break;
}
return false;

368}

//************************************Initializing code

**
373

void initializeArray(struct image *img){
//fill the array with random values, O inicate empty and 1 indiate

tree
378int random=0;

srand(time(NULL));

71

for(int i=0;i<img->height;i++){
for(int j=0;j<img->width;j++){

// The initial state of each cell of the spatial
grid is either set to #tree with

383//a probability p or to #empty with a probability
1-p.

double val = (double)rand() / RAND_MAX;
if(val <= 0.58) //Probatility to have tree is

0.58
random = 1;

else
388random = 0;

img->gridCellState[i*img->width + j]=random;
}

}
}

393

__global__ void SetZero(int *tabi ,int w, int h)
{

398//int i = blockIdx.y * blockDim.y + threadIdx.y;;
int j = blockIdx.x * blockDim.x + threadIdx.x;
if(j<h*w) tabi[j] = 0;

}

403
//Generate Fire code
//It take as input the image and the number of trees to be fired randomly
void generateFire(struct image *img, int firedTreeCount)
{

408int i;
//After the first step, a random selected cell is fired

srand(time(NULL));int random;
for(i=0; i<firedTreeCount; i++){

random = rand()%((img->height * img->width) -1);
413img->gridCellState[random]=2;

}
}

//***Transition Code

418//process the data on the GPU

void processOnGPU(struct image *tin,struct image *tout)
{

//The number of blocks within a gird
int nBlocks = (tin->width*(tin->height/SLICE))/BLSIZE+ ((tin->width

*(tin->height/SLICE))%BLSIZE ==0?0:1);
423transitionFunc <<<nBlocks ,BLSIZE >>>(tin->gridCellState , tout ->

gridCellState , tin->width , tin->height/SLICE);
}

//send data from HOST to DEVICE
428void toGPU(struct image *tin,struct image *tout)

{
int part ,part_with_neighbors;
int slice_num;
int last_part , part_remaining;

433//part: hold the number of elments for a part,
//for example if image 10*9, and SLICE=2, then
//the part is 10*(floor(9/2)) =40;
part = tin->width * (tin->height/SLICE);

438//part with neighbors hold a part with north and south neighbors
//add two rows, one on top for north neighbors
//and one on bottom for south neighbors

72

part_with_neighbors=part + (2*tin->width);

443//Check if the image can be fully represented ny the number of
slice seleced,

//explained in details in the main function
slice_num =SLICE;
while ((slice_num * part) < (tin->height * tin->width))

slice_num++;
448

if(tin->offset/part==0){
//if we are in the begining and since we need the last row

state of the original image, which are
//considered as NORTH neighbours, firstly, we copy this

last row of the original image and then
//the first part of the image containing inaddition to one

more row for the SOUTH neighbours.
453

//North row indexing begin at the leftmost elements of last
row

int north_row = (tin->width*(tin->height -1));
//size of north neighbors
size_t size_north = tin->width * sizeof(int);

458//copy to gpu, firstly the north neighbor
cudaMemcpy(tout ->gridCellState ,tin->gridCellState+north_row

,size_north ,cudaMemcpyHostToDevice);
//copy the the first part from begining to size of one part

plus size of a width
size_t remaing_part = (part + (tin->width))*sizeof(int);
cudaMemcpy(tout ->gridCellState+(tin->width),tin->

gridCellState ,remaing_part ,cudaMemcpyHostToDevice);
463}

//if we are in between the first and last slice
else if((tin->offset/part >0) &&((tin->offset/part <slice_num -1))){

//copy a part of the image including one row before and one
row after for NORTH and SOUTH neighbour respectively

size_t part_size = part_with_neighbors * sizeof(int);
468cudaMemcpy(tout ->gridCellState ,tin->gridCellState+(tin->

offset - tin->width), part_size ,cudaMemcpyHostToDevice
);

}
else if (tin->offset/part==slice_num -1){
//if we are in the last part we copy the last part including one

row before the last part for NORTH neighbours
// and also we copy the first row of original image which represent

the south neigbhors of the last part
473//if the part is not fully filled we copy the rest of elements from

the top until we fill the whole part
last_part = (tin->width *tin->height) - (part*(slice_num -1)

) + tin->width;

//The remaining part to be used from top
part_remaining = part_with_neighbors -last_part;

478
//Copy the last part , with one row before that represet

the north neighbor
size_t last_part_size = last_part * sizeof(int);

cudaMemcpy(tout ->gridCellState ,tin->gridCellState+(tin->
offset - tin->width),last_part_size ,
cudaMemcpyHostToDevice);

483//copy the remaing part
size_t part_remaining_size = part_remaining * sizeof(int);
cudaMemcpy(tout ->gridCellState+ last_part ,tin->

gridCellState ,part_remaining_size ,
cudaMemcpyHostToDevice);

}
}

73

488
//send data bacck -result- from DEVICE to HOST
void fromGPU(struct image *tin,struct image *tout)
{

int part ,last_part;
493//part: hold the number of elments for a part,

//for example if image 10*9, and SLICE=2, then
//the part is 10*(floor(9/2)) =40;
part = (tin->width * (tin->height/SLICE));
int slice_num =SLICE;

498while ((slice_num * part) < (tin->height * tin->width))
slice_num++;

//copy data from host to device
if ((tout ->offset/part) != (slice_num -1)){

503size_t size_image = tin->width*(tin->height/SLICE) *sizeof(
int);

cudaMemcpy(tout ->gridCellState+tout ->offset ,tin->
gridCellState ,size_image ,cudaMemcpyDeviceToHost);

//dumpArrayColor(tout->gridCellState+tout->offset, tin->
width, tin->height/SLICE);

}
else{

508last_part = (tin->width *tin->height) - (part*(slice_num -1)
);

size_t size_image = last_part *sizeof(int);
cudaMemcpy(tout ->gridCellState+tout ->offset ,tin->

gridCellState ,size_image ,cudaMemcpyDeviceToHost);
}

}
513

__global__ void transitionFunc(int *grid , int *bufferGrid , int width , int
height){

//check the cell's 4 neighbors
//Northj, south, east, west
int cellState;

518int north , east , south , west;
int i;
i= blockIdx.x * blockDim.x + threadIdx.x;
if(i<height*width){

//The input grid is two rows more for the north row
neighbour and south

523//The first row is only used for neihbour state, so the first
element to check is i+width,

//and the Norht neighbour will be i+width-width = i
north= i;
//south neighbour
south= i+width+width;

528//here we need to check if the east neighbour doesnot exceed the
right border, if so its neighbour

//is the leftmost element in he same row
//to get in which row we are, we use (i+width)/width
east = ((i+width+1) >=((((i+width)/width)*width)+width)) ? ((i+

width)/width)*width:i+width+1;
//west

533west = (i+width -1) <(((i+width)/width)*width) ?(((i+width)/width)
*width)+width -1 : i+width -1;

//Calculating the new states

if(grid[(i+width)] ==0) cellState=0;
538else if (grid[i+width] ==1){

if(grid[north] == 2 || grid[south] ==2
|| grid[east] ==2 || grid[west] ==2

){
cellState=2;

74

543}
else{

cellState=1;
}

}
548else if (grid[i+width] ==2) cellState= 3;

else cellState= 0;

//Store the new state of time t+1 in bufferGrid
bufferGrid[i] = cellState;

553}
}
//swap two grids
void swapGrids(int *&grid , int *&bufferGrid){

int *temp;
558temp = grid;

grid = bufferGrid;
bufferGrid= temp;

}

563
/**Input Methods

**/
//Function that ask the user to enter the path of image and initialize it

on
//based on a reference number and threshold value,
//the reference number is used to detect the green color in the image, i.e

to detect the trees
568//it then stores the state of the image in img

bool readBMP(struct image *img)
{

char fileName [100];
printf("\nPlease enter file name .bmp:\n");

573scanf("%s",fileName);

FILE* file = fopen(fileName , "rb");
if(file==0)
{

578printf("\nCould not open the file");
return false;

}
else
{

583unsigned char info[54];
int distance;
int state=0;
int width , height;
fread(info , sizeof(unsigned char), 54, file); // read the 54-byte

header
588// extract image height and width from header

width = *(int*)&info[18];
height = *(int*)&info[22];

printf("\nwidth:%d",width);
593printf("\nheight:%d",height);

//store the width
img->width= width;
img->height=height;

598//allocation on the host
//allocate memory for the forest states at time t;
img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof(int));

//3 bytes per pixel
603int size = 3 * img->width * img->height;

75

unsigned char* data = (unsigned char*)malloc(size); // allocate 3
bytes per pixel

fread(data , sizeof(unsigned char), size , file); // read the rest of
the data at once

fclose(file);

608//detect color based on ecidian distance;

for(int i =0 ; i<size; i+=3){//height
//Red indeed at i+2. Green indeed at i+1, Blue indeed at i,

the order in the file is B, G , Red
distance = sqrt(pow((data[i+2] - RED_REF),2) + pow((data[i

+1] - GREEN_REF),2) + pow((data [i] - BLUE_REF),2));
613state=0;

if(distance < THRESHOLD)
{

state=1;
}

618else state=0;
//i is 3 times more
img->gridCellState[(i/3)]=state;

}
return true;

623}
}

//Random generation of a forest
bool randomGeneration(struct image *img)

628{
printf("Random gereration");
int width , height;
bool succ;
printf("\nEnter width: ");

633scanf("%d",&width);
printf("\nEnter height: ");
scanf("%d",&height);
img->width= width;
img->height=height;

638//allocation on the host
//allocate memory for the forest states at time t;
img->gridCellState = (int *) malloc ((img->width * img->height) *

sizeof(int));
succ =true;
//initializeArray(img);

643printf("allocated");
initializeArray(img);
//initializationOnGPU(img);
if(succ)

return true;
648else

return false;
}

/**OpenGL
Display Helper **********************/

653void computeFPS()
{

frameCount++;
fpsCount++;

658if (fpsCount == fpsLimit) {
char fps[256];

float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
663sprintf(fps, "Forest Fire Automate Simulation , By AHMED Ahmed ,

Supervised by Prof.Bernard Pottier: %3.1f fps %d generations",

76

ifps , frameCount);

glutSetWindowTitle(fps);
fpsCount = 0;
//if (g_CheckRender && !g_CheckRender->IsQAReadback()) fpsLimit = (

int)MAX(ifps, 1.f);
668

//checkCudaErrors(cutResetTimer(timer));
sdkResetTimer(&timer);
//AutoQATest();

}
673}

void keyboard(unsigned char key, int x, int y)
678{

if (key==' ')
{

g_pause = !g_pause;
683}

if (key=='s')
{

g_pause = true;
688g_singleStep = true;

}
display();

}

693
//***Helpers

**********************/
//Print functions
void dumpArray(struct image *img){

int i,j;
698printf("\n**\n");

//print contents of the array
for(i=0;i<img->height;i++){

for(j=0;j<img->width;j++){
printf("%d ",img->gridCellState[i * img->width + j

]);
703}

printf("\n");
}

}
void dumpArrayColor(struct image *img){

708printf("\n**\n");
//print contents of the array
int i,j;
int *grid ,width;
grid = img->gridCellState;

713width = img->width;
for(i=0;i<img->height;i++){

for(j=0;j<img->width;j++){
if(grid[i * width + j] == 0) printf("\e[1;0m%d ",

grid[i * width + j]);
else if(grid[i * width + j] == 1) printf("\e[1;32m%

d ",grid[i * width + j]);
718else if(grid[i * width + j] == 2) printf("\e[1;31m%

d ",grid[i * width + j]);
else if(grid[i * width + j] == 3) printf("\e[1;34m%d ",grid[i *

width + j]);
}
printf("\e[1;0m\n");

}

77

723}
void dumpArrayColor(int *grid , int width ,int height){

int i,j;
printf("\n**\n");
//print contents of the array

728for(i=0;i<height;i++){
for(j=0;j<width;j++){

if(grid[i * width + j] == 0) printf("\e[1;0m%d ",grid[i * width
+ j]);

else if(grid[i * width + j] == 1) printf("\e[1;32m%
d ",grid[i * width + j]);

else if(grid[i * width + j] == 2) printf("\e[1;31m%
d ",grid[i * width + j]);

733else if(grid[i * width + j] == 3) printf("\e[1;34m%d ",grid[i *
width + j]);

}
printf("\e[1;0m\n");

}
}

738//Delay between the outputs
void wait (int seconds){

clock_t endwait;
endwait = clock () + seconds * CLOCKS_PER_SEC ;
while (clock() < endwait) {}

743}

78

